Mathematica Asked by Gabri on February 26, 2021
I am trying to solve the following system analytically but apparently Mathematica does not know how to do it (although I know there exists an analytic solution). Can anyone help me?
Thank you!!
There are 4 functions of 4 variables to determine with the following 16 coupled equations:
D[pr[t, x, r, th], t]*t + pr[t, x, r, th] == 0,
D[px[t, x, r, th], t]*t + px[t, x, r, th] == 0,
D[pth[t, x, r, th], t]*t + pth[t, x, r, th] == 0,
D[pt[t, x, r, th], r] == 0,
D[pr[t, x, r, th], r]*t + pt[t, x, r, th] ==
0, (2 + k r)*D[px[t, x, r, th], r] + k px[t, x, r, th] ==
0, (2 + k r)*D[pth[t, x, r, th], r] + k pth[t, x, r, th] ==
0, (4 + k x^2)^2 D[pt[t, x, r, th], x] -
4 k (2 + kr) t px[t, x, r, th] ==
0, (4 + k r^2)^2 D[pr[t, x, r, th], x] -
4 (-4 + k^2 r^2) px[t, x, r, th] == 0,
D[t (2 + k r) (4 + k x^2) px[t, x, r, th],
x] + (2 + k r) (4 + k x^2) pt[t, x, r, th] +
t k (4 + kx^2) pr[t, x, r, th] -
2 k x t (2 + k r) px[t, x, r, th] == 0,
D[(4 x + k x^2) pth[t, x, r, th],
x] + (4 - k x^2) pth[t, x, r, th] ==
0, (4 + k x^2)^2 D[pt[t, x, r, th], th] -
4 k (2 + k r) t x^2 pth[t, x, r, th] ==
0, (4 + k x^2)^2 D[pr[t, x, r, th], th] -
4 (k^2 r^2 - 4) x^2 pth[t, x, r, th] ==
0, (4 + k x^2) D[px[t, x, r, th], th] - (-4 + k x^2) x pth[t, x, r,
th] == 0,
t (2 + k r) (4 x + k x^3) D[pth[t, x, r, th],
th] + (4 - k x^2) (2 + k r) t px[t, x, r,
th] + (2 + k r) (4 x + k x^3) pt[t, x, r, th] +
k t (4 - k x^2) prt (2 + k r) (4 x + k x^3) == 0}, {pt[t, x, r,
th], px[t, x, r, th], pr[t, x, r, th], pth[t, x, r, th]}, {t, x, r,
th}]
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP