TransWikia.com

How to solve complex equations and plot the graph?

Mathematica Asked on February 23, 2021

I am trying to solve these equations and want to plot the value of $a^{dagger}a$ versus P0. I have tried this code but this gives me an error like "Conjunction::argr: Conjunction called with 1 argument; 2 arguments are expected. >>". If there is another method to solve this I don’t know. If anybody can solve this will be appreciated.

delta = 4;
g0 = 1;
Pb = 2;
KL = 1;
kb = 0.2;
ome1 = 1;
gma = 0.02;
nth = 2;
Lf = Conjugate[a1]*b1;
Bf = a1*b1;
NL = Conjugate[a1]*a1;
sol = NSolve[{I*P0*(Conjugate[a1] - a1) + 
      I*Pb*(Lf - Conjugate[Lf] + Conjugate[Bf] - Bf) - KL*NL - 
      kb*(Lf*a1 + Conjugate[Lf]*Conjugate[a1] + Bf*Conjugate[a1] + 
         Conjugate[Bf]*
          a1 + (NL - 2*Abs[a1]^2)*(b1 + Conjugate[b1])) == 0, 
    I*g0*((NL - 2*Abs[a1]^2)*(Conjugate[b1] - b1) + 
         Conjugate[Lf]*Conjugate[a1] - Lf*a1 + Conjugate[Bf]*a1 - 
         Bf*Conjugate[a1]) + 
      I*Pb*(Conjugate[Bf] - Lf + Conjugate[Lf] - Bf) - 
      gma*Conjugate[b1]*b1 + gma*nth == 
     0, -I*delta*Lf - I*ome1*Lf + 
      I*g0*((2*NL - Abs[a1]^2 - Conjugate[b1]*b1 + 2*Abs[b1]^2 + 
            b1^2)*Conjugate[a1] - (Conjugate[Bf] + 2*Lf)*b1 - 
         Lf*Conjugate[b1]) - I*P0*b1 == 0, 
    I*delta*Bf - I*ome1*Bf + 
      I*g0*((2*NL - Abs[a1]^2 + Conjugate[b1]*b1 - 2*Abs[b1]^2)*
          a1 + (2*Bf - a1*b1 + Conjugate[Lf])*b1 + Bf*Conjugate[b1]) +
       I*P0*b1 + 
      I*Pb*(NL + Conjugate[b1]*b1 + a1^2 + b1^2 + 1) - (KL + gma)*
       Bf/2 - kb/
        2*((2*Bf - a1*b1 + Conjugate[Lf])*
          b1 + (Conjugate[b1]*b1 - 2*Abs[b1]^2)*a1 + 
         Bf*Conjugate[b1]) == 0, 
    I*delta*a1 + I*delta*a1 + I*g0*(Conjugate[Lf] + Bf) + I*P0 + 
      I*Pb*(b1 + Conjugate[b1]) - KL*a1/2 - 
      kb*(Conjugate[Lf] + Bf)/2 == 
     0, -I*ome1*b1 + I*g0*NL + I*Pb*(a1 + Conjugate[a1]) - gma*b1/2 ==
      0}, {a1, b1}];
Plot[{Evaluate[Conjugate[a1]*a1] /. sol}, {P0, 0, 30}]

One Answer

Clear["Global`*"]

Use exact values for the constants to facilitate simplification.

delta = 4;
g0 = 1;
Pb = 2;
KL = 1;
kb = 2/10;
ome1 = 1;
gma = 2/100;
nth = 2;
Lf = Conjugate[a1]*b1;
Bf = a1*b1;
NL = Conjugate[a1]*a1;

eqns = And @@ 
   Simplify[{I*P0*(Conjugate[a1] - a1) + 
       I*Pb*(Lf - Conjugate[Lf] + Conjugate[Bf] - Bf) - KL*NL - 
       kb*(Lf*a1 + Conjugate[Lf]*Conjugate[a1] + Bf*Conjugate[a1] + 
          Conjugate[Bf]*a1 + (NL - 2*Abs[a1]^2)*(b1 + Conjugate[b1])) == 0, 
     I*g0*((NL - 2*Abs[a1]^2)*(Conjugate[b1] - b1) + 
          Conjugate[Lf]*Conjugate[a1] - Lf*a1 + Conjugate[Bf]*a1 - 
          Bf*Conjugate[a1]) + I*Pb*(Conjugate[Bf] - Lf + Conjugate[Lf] - Bf) -
        gma*Conjugate[b1]*b1 + gma*nth == 
      0, -I*delta*Lf - I*ome1*Lf + 
       I*g0*((2*NL - Abs[a1]^2 - Conjugate[b1]*b1 + 2*Abs[b1]^2 + b1^2)*
           Conjugate[a1] - (Conjugate[Bf] + 2*Lf)*b1 - Lf*Conjugate[b1]) - 
       I*P0*b1 == 0, 
     I*delta*Bf - I*ome1*Bf + 
       I*g0*((2*NL - Abs[a1]^2 + Conjugate[b1]*b1 - 2*Abs[b1]^2)*
           a1 + (2*Bf - a1*b1 + Conjugate[Lf])*b1 + Bf*Conjugate[b1]) + 
       I*P0*b1 + 
       I*Pb*(NL + Conjugate[b1]*b1 + a1^2 + b1^2 + 1) - (KL + gma)*Bf/2 - 
       kb/2*((2*Bf - a1*b1 + Conjugate[Lf])*
           b1 + (Conjugate[b1]*b1 - 2*Abs[b1]^2)*a1 + Bf*Conjugate[b1]) == 0, 
     I*delta*a1 + I*delta*a1 + I*g0*(Conjugate[Lf] + Bf) + I*P0 + 
       I*Pb*(b1 + Conjugate[b1]) - KL*a1/2 - kb*(Conjugate[Lf] + Bf)/2 == 
      0, -I*ome1*b1 + I*g0*NL + I*Pb*(a1 + Conjugate[a1]) - gma*b1/2 == 0}];

Convert a1 and b1 to Cartesian form so that all unknowns are real.

eqns2 = Assuming[Element[{x1, y1, x2, y2, P0}, Reals],
  (eqns /. {a1 -> x1 + I*y1, b1 -> x2 + I*y2}) // 
   ComplexExpand // FullSimplify]

(* False *)

This indicates that the equations are inconsistent. Further, there are too many equations for the number of unknowns, so the system is overdetermined.

Answered by Bob Hanlon on February 23, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP