Mathematica Asked on February 23, 2021
I am trying to solve these equations and want to plot the value of $a^{dagger}a$ versus P0. I have tried this code but this gives me an error like "Conjunction::argr: Conjunction called with 1 argument; 2 arguments are expected. >>". If there is another method to solve this I don’t know. If anybody can solve this will be appreciated.
delta = 4;
g0 = 1;
Pb = 2;
KL = 1;
kb = 0.2;
ome1 = 1;
gma = 0.02;
nth = 2;
Lf = Conjugate[a1]*b1;
Bf = a1*b1;
NL = Conjugate[a1]*a1;
sol = NSolve[{I*P0*(Conjugate[a1] - a1) +
I*Pb*(Lf - Conjugate[Lf] + Conjugate[Bf] - Bf) - KL*NL -
kb*(Lf*a1 + Conjugate[Lf]*Conjugate[a1] + Bf*Conjugate[a1] +
Conjugate[Bf]*
a1 + (NL - 2*Abs[a1]^2)*(b1 + Conjugate[b1])) == 0,
I*g0*((NL - 2*Abs[a1]^2)*(Conjugate[b1] - b1) +
Conjugate[Lf]*Conjugate[a1] - Lf*a1 + Conjugate[Bf]*a1 -
Bf*Conjugate[a1]) +
I*Pb*(Conjugate[Bf] - Lf + Conjugate[Lf] - Bf) -
gma*Conjugate[b1]*b1 + gma*nth ==
0, -I*delta*Lf - I*ome1*Lf +
I*g0*((2*NL - Abs[a1]^2 - Conjugate[b1]*b1 + 2*Abs[b1]^2 +
b1^2)*Conjugate[a1] - (Conjugate[Bf] + 2*Lf)*b1 -
Lf*Conjugate[b1]) - I*P0*b1 == 0,
I*delta*Bf - I*ome1*Bf +
I*g0*((2*NL - Abs[a1]^2 + Conjugate[b1]*b1 - 2*Abs[b1]^2)*
a1 + (2*Bf - a1*b1 + Conjugate[Lf])*b1 + Bf*Conjugate[b1]) +
I*P0*b1 +
I*Pb*(NL + Conjugate[b1]*b1 + a1^2 + b1^2 + 1) - (KL + gma)*
Bf/2 - kb/
2*((2*Bf - a1*b1 + Conjugate[Lf])*
b1 + (Conjugate[b1]*b1 - 2*Abs[b1]^2)*a1 +
Bf*Conjugate[b1]) == 0,
I*delta*a1 + I*delta*a1 + I*g0*(Conjugate[Lf] + Bf) + I*P0 +
I*Pb*(b1 + Conjugate[b1]) - KL*a1/2 -
kb*(Conjugate[Lf] + Bf)/2 ==
0, -I*ome1*b1 + I*g0*NL + I*Pb*(a1 + Conjugate[a1]) - gma*b1/2 ==
0}, {a1, b1}];
Plot[{Evaluate[Conjugate[a1]*a1] /. sol}, {P0, 0, 30}]
Clear["Global`*"]
Use exact values for the constants to facilitate simplification.
delta = 4;
g0 = 1;
Pb = 2;
KL = 1;
kb = 2/10;
ome1 = 1;
gma = 2/100;
nth = 2;
Lf = Conjugate[a1]*b1;
Bf = a1*b1;
NL = Conjugate[a1]*a1;
eqns = And @@
Simplify[{I*P0*(Conjugate[a1] - a1) +
I*Pb*(Lf - Conjugate[Lf] + Conjugate[Bf] - Bf) - KL*NL -
kb*(Lf*a1 + Conjugate[Lf]*Conjugate[a1] + Bf*Conjugate[a1] +
Conjugate[Bf]*a1 + (NL - 2*Abs[a1]^2)*(b1 + Conjugate[b1])) == 0,
I*g0*((NL - 2*Abs[a1]^2)*(Conjugate[b1] - b1) +
Conjugate[Lf]*Conjugate[a1] - Lf*a1 + Conjugate[Bf]*a1 -
Bf*Conjugate[a1]) + I*Pb*(Conjugate[Bf] - Lf + Conjugate[Lf] - Bf) -
gma*Conjugate[b1]*b1 + gma*nth ==
0, -I*delta*Lf - I*ome1*Lf +
I*g0*((2*NL - Abs[a1]^2 - Conjugate[b1]*b1 + 2*Abs[b1]^2 + b1^2)*
Conjugate[a1] - (Conjugate[Bf] + 2*Lf)*b1 - Lf*Conjugate[b1]) -
I*P0*b1 == 0,
I*delta*Bf - I*ome1*Bf +
I*g0*((2*NL - Abs[a1]^2 + Conjugate[b1]*b1 - 2*Abs[b1]^2)*
a1 + (2*Bf - a1*b1 + Conjugate[Lf])*b1 + Bf*Conjugate[b1]) +
I*P0*b1 +
I*Pb*(NL + Conjugate[b1]*b1 + a1^2 + b1^2 + 1) - (KL + gma)*Bf/2 -
kb/2*((2*Bf - a1*b1 + Conjugate[Lf])*
b1 + (Conjugate[b1]*b1 - 2*Abs[b1]^2)*a1 + Bf*Conjugate[b1]) == 0,
I*delta*a1 + I*delta*a1 + I*g0*(Conjugate[Lf] + Bf) + I*P0 +
I*Pb*(b1 + Conjugate[b1]) - KL*a1/2 - kb*(Conjugate[Lf] + Bf)/2 ==
0, -I*ome1*b1 + I*g0*NL + I*Pb*(a1 + Conjugate[a1]) - gma*b1/2 == 0}];
Convert a1
and b1
to Cartesian form so that all unknowns are real.
eqns2 = Assuming[Element[{x1, y1, x2, y2, P0}, Reals],
(eqns /. {a1 -> x1 + I*y1, b1 -> x2 + I*y2}) //
ComplexExpand // FullSimplify]
(* False *)
This indicates that the equations are inconsistent. Further, there are too many equations for the number of unknowns, so the system is overdetermined.
Answered by Bob Hanlon on February 23, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP