Mathematica Asked by siraphat on April 30, 2021
I want to plot 1100(r[t]-14)
vs θ[t]
. How can I plot the functions of r[t]
and θ[t]
from NDsolve
? This is my code to find r[t]
and θ[t]
:
m = 81;
g = 9.81;
h = 12;
l = 15;
d = 15;
a = (d - h) [Pi]/180;
s = NDSolve[{(m*g*
Sin[[Theta][t]]) - (m*(r''[t] - r[t] (([Theta]'[t])^2))) ==
1100 (r[t] - 14), g*Cos[[Theta][t]] ==
r[t]*[Theta]''[t] + 2*r'[t]*[Theta]'[t], [Theta][0] ==
ArcSin[a/l], [Theta]'[0] == 0, r[0] == 15, r'[0] == 0}, {r, [Theta]}, {t, 0, 100}]
And this is code that I use to make the plot:
ParametricPlot[ Evaluate[{1100*(r[t] - 14), [Theta][t]} /. s], {t, 0, 2}, PlotPoints -> 200]
Clear["Global`*"]
m = 81;
g = 9.81;
h = 12;
l = 15;
d = 15;
a = (d - h) π/180;
s = NDSolve[
{(m*g*Sin[θ[t]]) - (m*(r''[t] - r[t] ((θ'[t])^2))) ==
1100 (r[t] - 14),
g*Cos[θ[t]] == r[t]*θ''[t] + 2*r'[t]*θ'[t],
θ[0] == ArcSin[a/l], θ'[0] == 0, r[0] == 15,
r'[0] == 0},
{r, θ}, {t, 0, 100}];
Manipulate[
ParametricPlot[{1100 (r[t] - 14), θ[t]} /. s[[1]], {t, 0,
tmax},
AspectRatio -> 1,
ColorFunction -> Function[{x, y, t}, ColorData["Rainbow"][t]],
PlotLegends -> BarLegend[{"Rainbow", {0, tmax}}]],
{{tmax, 10}, 1, 100, 1, Appearance -> "Labeled"}]
Answered by Bob Hanlon on April 30, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP