Mathematica Asked on June 17, 2021
I have the following two codes:
In[1]:=f = 10^5;
u = 1;
m = (R1 + R3)/(c*R1*R3);
R1 = 100;
R3 = 100;
n = 100;
k = c*R1;
c = 100*10^(-9);
FullSimplify[
f*Integrate[(Integrate[(((((u*Sin[2*Pi*f*x])*Sign[u*Sin[2*Pi*f*x]])/
2) + ((u*Sin[2*Pi*f*x])/2)))*((Exp[-m*(t - x)])/k), {x,
0, t}])^2/n, {t, 0, 1/f}]]
Out[1]=(E^4 + (-1 +
E (-2 + E (1 + E) (-1 + 3 E))) [Pi]^2)/(1600 E^4 (1 + [Pi]^2)^2)
And:
In[2]:=f = 10^5;
u = 1;
m = (R1 + R3)/(c*R1*R3);
R1 = 100;
R3 = 100;
n = 100;
k = c*R1;
c = 100*10^(-9);
FullSimplify[
f*Integrate[(Integrate[(((((u*Sin[2*Pi*f*x])*Sign[u*Sin[2*Pi*f*x]])/
2) + ((u*Sin[2*Pi*f*x])/2)))*((Exp[-m*(t - x)])/k), {x,
0, t}, Assumptions ->
u > 0 && f > 0 && t >= 0 && m > 0 && k > 0])^2/n, {t, 0, 1/f},
Assumptions ->
n > 0 && u > 0 && f > 0 && t >= 0 && m > 0 &&
k > 0], Assumptions ->
n > 0 && u > 0 && f > 0 && t >= 0 && m > 0 && k > 0]
Out[2]=(1 + (2 - 1/E^4) [Pi]^2)/(1600 (1 + [Pi]^2)^2)
They both are representing the same computation but gave different results, why is that? And which one is true?
The numeric integration confirms the former
f = 10^5;u = 1;m = (R1 + R3)/(c*R1*R3);R1 = 100;R3 = 100;n = 100;k = c*R1;c = 100*10^(-9);
g[t_?NumericQ] := (NIntegrate[(((((u*Sin[2*Pi*f*x])*
Sign[u*Sin[2*Pi*f*x]])/2) + ((u*Sin[2*Pi*f*x])/
2)))*((Exp[-m*(t - x)])/k), {x, 0, t}])^2/n;
f*NIntegrate[g[t], {t, 0, 1/f}]
(*0.000187112*)
in view of
N[(E^4 + (-1 +
E (-2 + E (1 + E) (-1 + 3 E))) [Pi]^2)/(1600 E^4 (1 + [Pi]^2)^2)]
(*0.000187112*)
The superfluous assumptions may cause the incorrect result of the latter.
Correct answer by user64494 on June 17, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP