TransWikia.com

Expressing functional dependency given trigonometric relations

Mathematica Asked on March 6, 2021

Given (assuming $0 leq t leq pi/2$)

x == (1 + a Sin[2 t]) Sin[t],

and

y == 1 - (1 + a Sin[2 t]) Cos[t]

How can I get $y(x)$ without the $t$ variable appearing?

Solving for, and eliminating, $t$ directly proved very awkward and this didn’t work:

Assuming[0 < t < [Pi]/2,
 Eliminate[{x == (1 + a Sin[2 t]) Sin[t],
   y == 1 - (1 + a  Sin[2 t]) Cos[t] }, t]]

One Answer

The usual procedure for obtaining a Cartesian equation from parametric equations like yours is to use GroebnerBasis[] for eliminating variables:

First[GroebnerBasis[Append[TrigExpand[{x == (1 + a Sin[2 t]) Sin[t],
                                       y == 1 - (1 + a Sin[2 t]) Cos[t]}], 
                           Cos[t]^2 + Sin[t]^2 == 1],
                    {x, y, a}, {Cos[t], Sin[t]}]]
   -4 a x + x^2 - 4 a^2 x^2 - 4 a x^3 + 2 x^4 + x^6 - 2 y + 12 a x y - 8 x^2 y +
   8 a^2 x^2 y + 4 a x^3 y - 6 x^4 y + 9 y^2 - 12 a x y^2 + 16 x^2 y^2 -
   4 a^2 x^2 y^2 + 3 x^4 y^2 - 16 y^3 + 4 a x y^3 - 12 x^2 y^3 + 14 y^4 +
   3 x^2 y^4 - 6 y^5 + y^6

The result obtained is a degree-$6$ polynomial, so I am not very sanguine about solving for y in this case.

Answered by J. M.'s ennui on March 6, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP