Mathematica Asked on March 19, 2021
I’m trying to draw two curves and a surface, where one of the curves is to appear on the surface. Unfortunately the curves are drawn with very few points and appear extremely unclear. Is there a way to make them clear thick lines instead?
Here’s the code:
Manipulate[ ParametricPlot3D[{{Cos[[Phi]] Cos[[Theta]], Sin[[Phi]] Cos[[Theta]], Sin[[Theta]]}, {b0x + 2 brx Cos[[Phi]] + 2 bix Sin[[Phi]], b0y + 2 bry Cos[[Phi]] + 2 biy Sin[[Phi]], b0z + 2 brz Cos[[Phi]] + 2 biz Sin[[Phi]]}, {(b0x + 2 brx Cos[[Phi]] + 2 bix Sin[[Phi]])/ Norm[{b0x + 2 brx Cos[[Phi]] + 2 bix Sin[[Phi]], b0y + 2 bry Cos[[Phi]] + 2 biy Sin[[Phi]], b0z + 2 brz Cos[[Phi]] + 2 biz Sin[[Phi]]}], (b0y + 2 bry Cos[[Phi]] + 2 biy Sin[[Phi]])/ Norm[{b0x + 2 brx Cos[[Phi]] + 2 bix Sin[[Phi]], b0y + 2 bry Cos[[Phi]] + 2 biy Sin[[Phi]], b0z + 2 brz Cos[[Phi]] + 2 biz Sin[[Phi]]}], (b0z + 2 brz Cos[[Phi]] + 2 biz Sin[[Phi]])/ Norm[{b0x + 2 brx Cos[[Phi]] + 2 bix Sin[[Phi]], b0y + 2 bry Cos[[Phi]] + 2 biy Sin[[Phi]], b0z + 2 brz Cos[[Phi]] + 2 biz Sin[[Phi]]}]}}, {[Phi], 0, 2 [Pi]}, {[Theta], -[Pi], [Pi]}, PlotRange -> {-2, 2}, Mesh -> None, PlotStyle -> Thick, PlotStyle -> Opacity[0.6]], {{b0x, 0}, -5, 5}, {{b0y, 0}, -5, 5}, {{b0z, 1}, -5, 5}, {{brx, 1}, -5, 5}, {{bry, 0}, -5, 5}, {{brz, 0}, -5, 5}, {{bix, 0}, -5, 5}, {{biy, 1}, -5, 5}, {{biz, 0}, -5, 5}]
You can use the option PlotStyle
to style each of the three parts separately:
PlotStyle -> {Opacity[.6], EdgeForm[{Opacity[1], Thick, Blue}],
EdgeForm[{Opacity[1], Thick, Red}]}
Since the three-argument form of ParametricPlot3D
produces polygons (i.e., those lines are not Line
s!), you need to set the styles using EdgeForm
.
We get a much cleaner picture using the two-argument form of ParametricPlot3D
for curves and the three-argument form for surfaces and combine the two with Show
:
Manipulate[Show[ParametricPlot3D[{
{b0x + 2 brx Cos[ϕ] + 2 bix Sin[ϕ], b0y + 2 bry Cos[ϕ] + 2 biy Sin[ϕ],
b0z + 2 brz Cos[ϕ] + 2 biz Sin[ϕ]},
{(b0x + 2 brx Cos[ϕ] + 2 bix Sin[ϕ])/
Norm[{b0x + 2 brx Cos[ϕ] + 2 bix Sin[ϕ], b0y + 2 bry Cos[ϕ] + 2 biy Sin[ϕ],
b0z + 2 brz Cos[ϕ] + 2 biz Sin[ϕ]}],
(b0y + 2 bry Cos[ϕ] + 2 biy Sin[ϕ])/
Norm[{b0x + 2 brx Cos[ϕ] + 2 bix Sin[ϕ], b0y + 2 bry Cos[ϕ] + 2 biy Sin[ϕ],
b0z + 2 brz Cos[ϕ] + 2 biz Sin[ϕ]}],
(b0z + 2 brz Cos[ϕ] + 2 biz Sin[ϕ])/
Norm[{b0x + 2 brx Cos[ϕ] + 2 bix Sin[ϕ], b0y + 2 bry Cos[ϕ] + 2 biy Sin[ϕ],
b0z + 2 brz Cos[ϕ] + 2 biz Sin[ϕ]}]}},
{ϕ, 0, 2 π}, PlotRange -> {-2, 2}, BoxRatios -> 1,
PlotStyle -> {Directive[Thickness[.01], Blue], Directive[Thickness[.01], Red]}],
ParametricPlot3D[{Cos[ϕ] Cos[θ], Sin[ϕ] Cos[θ], Sin[θ]},
{ϕ, 0, 2 π}, {θ, -π, π},
PlotRange -> {-2, 2}, Mesh -> None, PlotStyle -> Opacity[0.3]]],
{{b0x, 0}, -5, 5}, {{b0y, 0}, -5, 5}, {{b0z, 1}, -5, 5},
{{brx, 1}, -5, 5}, {{bry, 0}, -5, 5}, {{brz, 0}, -5, 5},
{{bix, 0}, -5, 5}, {{biy, 1}, -5, 5}, {{biz, 0}, -5, 5}]
Correct answer by kglr on March 19, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP