Mathematica Asked by LCH on February 5, 2021
I’d like to find the real parameters $left{a_{14},c_6,c_8,c_{10},c_{12},c_{13},c_{14},c_{15},alpha right}$ in M, which is a $5times 5$ real symmetric matrix, such that M is positive semidefinite. I assume that $alphage 1$. My idea is to use Descartes’ rule of sign (https://en.wikipedia.org/wiki/Descartes%27_rule_of_signs) to determine the sign of the real roots of the corresponding characteristic polynomial $p(lambda)$.
However, the coefficients of $p(lambda)$ are rather complicated. Any reference, suggestion, idea, or comment is welcome. Thank you!
My code for $M$:
MatrixForm[{{(-7 + α)*Subscript[c, 15], (1/2)*((-6 + α)*Subscript[c, 14] + 7*Subscript[c, 15]),
(1/2)*((-5 + α)*Subscript[c, 13] + Subscript[c, 14]), Subscript[a, 14],
(1/2)*((-4 + α)*(-3 + α)*(-2 + α)*(-1 + α) + Subscript[c, 13])},
{(1/2)*((-6 + α)*Subscript[c, 14] + 7*Subscript[c, 15]), -2*Subscript[a, 14] + (-5 + α)*Subscript[c, 12] +
5*Subscript[c, 14], (1/2)*(-4 + α)*Subscript[c, 10] + Subscript[c, 12] + 2*Subscript[c, 13],
(1/2)*((-4 + α)*Subscript[c, 8] + 3*Subscript[c, 12]), 5*(-3 + α)*(-2 + α)*(-1 + α) + Subscript[c, 10]/2},
{(1/2)*((-5 + α)*Subscript[c, 13] + Subscript[c, 14]), (1/2)*(-4 + α)*Subscript[c, 10] + Subscript[c, 12] +
2*Subscript[c, 13], (-3 + α)*Subscript[c, 6] + Subscript[c, 10],
(1/4)*((-(-3 + α))*Subscript[c, 6] + 6*Subscript[c, 8] + 4*Subscript[c, 10]), 6*(-2 + α)*(-1 + α) + Subscript[c, 6]},
{Subscript[a, 14], (1/2)*((-4 + α)*Subscript[c, 8] + 3*Subscript[c, 12]),
(1/4)*((-(-3 + α))*Subscript[c, 6] + 6*Subscript[c, 8] + 4*Subscript[c, 10]),
(-3 + α)*(-2 + α)*(-1 + α) + Subscript[c, 8], (1/4)*(26*(-2 + α)*(-1 + α) - Subscript[c, 6])},
{(1/2)*((-4 + α)*(-3 + α)*(-2 + α)*(-1 + α) + Subscript[c, 13]), 5*(-3 + α)*(-2 + α)*(-1 + α) + Subscript[c, 10]/2,
6*(-2 + α)*(-1 + α) + Subscript[c, 6], (1/4)*(26*(-2 + α)*(-1 + α) - Subscript[c, 6]), 8*(-1 + α)}}]
A boring solution:
PositiveSemidefiniteMatrixQ[ m /. {
α -> 2,
Subscript[a, 14] -> 0,
Subscript[c, 6] -> 0,
Subscript[c, 8] -> 0,
Subscript[c, 10] -> 0,
Subscript[c, 12] -> 0,
Subscript[c, 13] -> 0,
Subscript[c, 14] -> 0,
Subscript[c, 15] -> 0}
]
(* True *)
For a more interesting solution, try finding parameters that make all the eigenvalues positive by maximizing the minimum eigenvalue like so:
evals = Eigenvalues[m];
{err, result} = NMaximize[Min[evals], Variables[m]]
(* {0.00105605, {α -> 1.0778, Subscript[a, 14] -> 0.174339,
Subscript[c, 6] -> -0.258389, Subscript[c, 8] -> 0.125641,
Subscript[c, 10] -> 0.373052, Subscript[c, 12] -> -0.264517,
Subscript[c, 13] -> -0.0915956, Subscript[c, 14] -> 0.133419,
Subscript[c, 15] -> -0.0302445}} *)
PositiveSemidefiniteMatrixQ[m /. result]
(* True *)
Answered by flinty on February 5, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP