Mathematica Asked on March 4, 2021
I’m trying to compare different calculation following different approaches and software programs. I basically plot a DensityPlot
with the following legend color bars:
The bar on the left was generated by Python, while the bar on the right was generated by Mathematica via ColorData[{"RedBlueTones", "Reverse"}]
. Although they are very similarly, the one in Mathematica doesn’t have the ‘white’ color transition between blue and red. I’m wondering whether it would be possible to have this ‘white’ color transitions in Mathematica too. Can I create my own ColorData
style using the colors from Python Colorbar?
Thanks!
How about
French = Blend[{{0, Blue}, {1/2 - 0.1, White},
{1/2 + 0.1, White}, {1, Red}}, #1] &;
Then
French /@ (Range[15]/15.)
ContourPlot[x, {x, 0, 1}, {y, 0, 1}, ColorFunction -> French]
Any variation is possible: e.g.
French2 = Blend[{{0, Darker[Blue, 0.7]}, {0.15, Blue}, {1/2 - 0.05,
White},
{1/2 + 0.05, White}, {0.9, Red}, {1, Darker[Red, 0.5]}}, #1] &;
Or alternatively,
col0 = Join[
ColorData["SiennaTones"] /@ (Range[0, 15]/15),
{White},
ColorData[{"DeepSeaColors", "Reverse"}] /@ (Range[0, 15]/15)];
nn = Length[col0] - 1;
col[x_] = Blend[Transpose[{Range[0, nn]/nn, col0}], x];
col /@ (Range[0,12]/12.)
Then
ContourPlot[x y, {x, -1, 1}, {y, -1, 1}, ColorFunction -> col, Contours -> 36,
ContourStyle -> None, PlotRange -> Full]
Update
If you want something which looks more closely to brewer-23
col0=List[List[0,RGBColor[List[Rational[103,255],0,Rational[31,255]]]],List[Rational[1,23],RGBColor[List[Rational[8,15],Rational[3,85],Rational[7,51]]]],List[Rational[2,23],RGBColor[List[Rational[167,255],Rational[19,255],Rational[8,51]]]],List[Rational[3,23],RGBColor[List[Rational[63,85],Rational[44,255],Rational[52,255]]]],List[Rational[4,23],RGBColor[List[Rational[41,51],Rational[74,255],Rational[67,255]]]],List[Rational[5,23],RGBColor[List[Rational[44,51],Rational[104,255],Rational[28,85]]]],List[Rational[6,23],RGBColor[List[Rational[232,255],Rational[133,255],Rational[7,17]]]],List[Rational[7,23],RGBColor[List[Rational[244,255],Rational[163,255],Rational[128,255]]]],List[Rational[8,23],RGBColor[List[Rational[50,51],Rational[62,85],Rational[52,85]]]],List[Rational[9,23],RGBColor[List[Rational[254,255],Rational[211,255],Rational[188,255]]]],List[Rational[10,23],RGBColor[List[Rational[254,255],Rational[227,255],Rational[212,255]]]],List[Rational[11,23],RGBColor[List[Rational[251,255],Rational[16,17],Rational[232,255]]]],List[Rational[12,23],RGBColor[List[Rational[82,85],Rational[247,255],Rational[83,85]]]],List[Rational[13,23],RGBColor[List[Rational[77,85],Rational[241,255],Rational[49,51]]]],List[Rational[14,23],RGBColor[List[Rational[43,51],Rational[233,255],Rational[242,255]]]],List[Rational[15,23],RGBColor[List[Rational[193,255],Rational[223,255],Rational[14,15]]]],List[Rational[16,23],RGBColor[List[Rational[167,255],Rational[208,255],Rational[229,255]]]],List[Rational[17,23],RGBColor[List[Rational[46,85],Rational[193,255],Rational[13,15]]]],List[Rational[18,23],RGBColor[List[Rational[104,255],Rational[172,255],Rational[209,255]]]],List[Rational[19,23],RGBColor[List[Rational[5,17],Rational[3,5],Rational[199,255]]]],List[Rational[20,23],RGBColor[List[Rational[56,255],Rational[134,255],Rational[63,85]]]],List[Rational[21,23],RGBColor[List[Rational[14,85],Rational[23,51],Rational[12,17]]]],List[Rational[22,23],RGBColor[List[Rational[29,255],Rational[97,255],Rational[11,17]]]],List[1,RGBColor[List[Rational[6,85],Rational[74,255],Rational[134,255]]]]];
So that
col0//Transpose
Then
col[x_] = Blend[col0, x]
Would work like this:
ContourPlot[Sin[ 10 x y] , {x, 0, 1}, {y, 0, 1}, ColorFunction -> col]
Or
ContourPlot[x y , {x, -1, 1}, {y, -1, 1}, ColorFunction -> col,
Contours -> 26, ContourStyle -> None, PlotRange -> Full]
Correct answer by chris on March 4, 2021
A cheap way to get what you want is to use Lighter[]
along with "RedBlueTones"
and an appropriate bell-shaped curve:
LinearGradientImage[Function[x, Lighter[ColorData["RedBlueTones", x],
Sech[5 (x - 1/2)]]], {300, 30}]
ContourPlot[x y, {x, -1, 1}, {y, -1, 1},
ColorFunction -> (Lighter[ColorData["RedBlueTones", #],
Sech[7.2 (# - 0.5)]] &),
Contours -> 26, ContourStyle -> None, PlotRange -> Full]
Answered by J. M.'s ennui on March 4, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP