Mathematica Asked by Jocelyn Minini on August 6, 2021
I have to following list to plot (from FEM software) {coord xi, coord yi, speed (norm of) vi} :
data = {{9.93371`, 3.60179`, 0.`}, {10.05561`, 3.4799`,
0.`}, {10.23147`, 3.33651`, 0.49062`}, {10.42954`, 3.10596`,
0.`}, {10.54697`, 2.98853`, 0.`}, {10.70487`, 3.05962`,
1.10058`}, {10.93688`, 3.22932`, 1.1813`}, {11.06328`, 3.30958`,
1.22172`}, {11.18162`, 3.40451`, 1.26253`}, {11.27948`, 3.52455`,
1.30506`}, {11.36744`, 3.64406`, 1.34518`}, {11.42741`, 3.79263`,
1.38723`}, {11.46428`, 3.94252`, 1.4262`}, {11.44661`, 4.09893`,
1.45909`}, {11.39439`, 4.26148`, 1.48745`}, {11.30213`, 4.4117`,
1.47135`}, {11.17947`, 4.54065`, 1.43523`}, {11.03999`, 4.64212`,
1.40232`}, {10.89399`, 4.72189`, 1.37388`}, {10.75874`, 4.78219`,
1.36481`}, {10.62579`, 4.83383`, 1.37037`}, {10.46383`, 4.86916`,
1.40609`}, {10.2824`, 4.91596`, 1.45279`}, {10.08402`, 4.98567`,
1.51373`}, {9.97027`, 5.0372`, 1.53897`}, {9.85791`, 5.09069`,
1.56094`}, {9.73983`, 5.16493`, 1.55862`}, {9.61517`, 5.23915`,
1.55036`}, {9.4849`, 5.3277`, 1.52584`}, {9.35216`, 5.42282`,
1.4855`}, {9.2175`, 5.52556`, 1.42655`}, {9.0805`, 5.63398`,
1.36423`}, {8.94924`, 5.74061`, 1.3045`}, {8.8261`, 5.84396`,
1.2555`}, {8.607`, 6.03119`, 1.17121`}, {8.49295`, 6.13266`,
1.13611`}, {8.38028`, 6.23363`, 1.09729`}, {8.23308`, 6.3666`,
1.04648`}, {8.08936`, 6.501`, 1.01091`}, {8.02755`, 5.50795`,
0.`}, {8.11056`, 5.42495`, 0.`}, {8.24833`, 5.28717`,
0.`}, {8.3861`, 5.1494`, 0.`}, {8.55173`, 4.98377`,
0.`}, {8.70302`, 4.83248`, 0.`}, {8.8543`, 4.6812`,
0.`}, {8.94114`, 4.59436`, 0.`}, {9.02798`, 4.50752`,
0.`}, {9.10874`, 4.42676`, 0.`}, {9.1895`, 4.346`,
0.`}, {9.35102`, 4.18448`, 0.`}, {9.4755`, 4.06`, 0.`}, {9.52572`,
4.00979`, 0.`}, {9.63764`, 3.89786`, 0.`}, {9.74957`, 3.78593`,
0.`}, {9.81181`, 3.72369`, 0.`}, {10.65765`, 3.97574`,
1.32908`}, {10.00578`, 4.37793`, 1.40131`}, {9.53505`, 4.70817`,
1.28146`}, {9.15971`, 5.01409`, 1.08497`}, {10.46839`, 4.39835`,
1.42817`}, {8.75244`, 5.36426`, 0.90506`}, {10.27759`, 3.82378`,
1.16758`}, {11.06109`, 3.96222`, 1.37589`}, {10.62283`, 3.53728`,
1.21643`}, {8.34333`, 5.74072`, 0.75765`}, {10.84284`, 4.31236`,
1.41483`}, {9.65123`, 4.37316`, 1.04236`}, {9.88181`, 4.70184`,
1.50021`}, {9.99744`, 4.0301`, 1.07169`}, {10.94357`, 3.64495`,
1.28606`}, {8.06924`, 5.89381`, 0.58085`}, {10.38469`, 4.10718`,
1.35411`}, {10.22755`, 4.60403`, 1.47702`}, {8.47742`, 5.47591`,
0.63767`}, {9.23557`, 4.72395`, 0.81169`}, {9.03987`, 5.28663`,
1.18426`}, {8.87957`, 5.05353`, 0.68186`}, {9.45399`, 4.99194`,
1.39635`}, {11.101`, 4.23019`, 1.43716`}, {8.69549`, 5.61851`,
1.08879`}, {9.41338`, 4.47832`, 0.77838`}, {9.71174`, 4.88655`,
1.51276`}, {10.35872`, 3.57028`, 1.00137`}, {9.83076`, 4.20811`,
1.07981`}, {8.28235`, 6.011`, 0.95185`}, {10.60171`, 3.28777`,
1.0487`}, {10.69535`, 4.5284`, 1.41986`}, {10.46114`, 4.63371`,
1.4394`}, {10.16489`, 4.20009`, 1.34803`}, {10.62315`, 4.21398`,
1.37602`}, {9.03115`, 4.8255`, 0.61088`}, {9.25532`, 5.21875`,
1.35104`}, {10.52112`, 3.76597`, 1.26416`}, {11.15572`, 3.74677`,
1.33833`}, {10.83431`, 3.43884`, 1.2213`}, {10.73809`, 3.7255`,
1.28`}, {10.01814`, 3.80812`, 0.78341`}, {8.68645`, 5.15589`,
0.52854`}, {8.93649`, 5.47478`, 1.20589`}, {8.61326`, 5.81671`,
1.1248`}, {10.92365`, 4.11964`, 1.39459`}, {10.17003`, 3.64963`,
0.7757`}, {11.26498`, 3.9992`, 1.4112`}, {10.25546`, 4.39287`,
1.43622`}, {10.12423`, 4.78299`, 1.51295`}, {11.01808`, 4.41629`,
1.43507`}, {8.09804`, 6.09381`, 0.8211`}, {10.85712`, 3.90181`,
1.33572`}, {9.8269`, 4.49514`, 1.37694`}, {10.21397`, 4.00976`,
1.26157`}, {8.13599`, 5.69142`, 0.44259`}, {8.28114`, 5.54288`,
0.45569`}, {9.63743`, 4.17171`, 0.68713`}, {8.4427`, 5.90516`,
1.03347`}, {9.79984`, 4.01213`, 0.7146`}, {8.04371`, 6.30814`,
0.93025`}, {8.56928`, 5.30763`, 0.55322`}, {10.33051`, 3.22123`,
0.24531`}, {10.47457`, 3.42418`, 0.98432`}, {10.4749`, 3.94537`,
1.29711`}, {8.5118`, 5.65968`, 0.89446`}, {9.7072`, 4.63759`,
1.37251`}, {10.03228`, 4.57375`, 1.48116`}, {11.10787`, 3.57455`,
1.2918`}, {9.49888`, 4.2824`, 0.6049`}, {9.96477`, 4.85668`,
1.53363`}, {9.39081`, 4.82043`, 1.19369`}, {10.87953`, 4.53803`,
1.41336`}, {10.82087`, 3.14447`, 1.14094`}, {10.9965`, 3.80574`,
1.33095`}, {9.42185`, 5.1642`, 1.44971`}, {8.87073`, 5.23128`,
0.90626`}, {9.99766`, 4.19735`, 1.25456`}, {9.57707`, 4.52699`,
1.12801`}, {9.6225`, 5.03616`, 1.51611`}, {10.32805`, 4.74715`,
1.46408`}, {8.86744`, 4.84562`, 0.36621`}, {8.72526`, 4.99575`,
0.35901`}, {9.24558`, 4.54402`, 0.54482`}, {10.68753`, 4.3647`,
1.41336`}, {9.08253`, 4.6724`, 0.42602`}, {8.40684`, 5.32817`,
0.34537`}, {10.21653`, 3.49617`, 0.65366`}, {10.35769`, 4.51381`,
1.44747`}, {8.23971`, 6.16261`, 0.99377`}, {10.75607`, 4.11161`,
1.37144`}, {8.21281`, 5.82895`, 0.68625`}, {10.31446`, 4.24749`,
1.39934`}, {10.61898`, 4.67164`, 1.41227`}, {10.46953`, 4.23737`,
1.38842`}, {9.18317`, 5.3656`, 1.33986`}, {10.53724`, 4.08618`,
1.35211`}, {10.99565`, 3.4572`, 1.24799`}, {9.38142`, 4.64236`,
0.94154`}, {10.80259`, 3.58767`, 1.25392`}, {9.29987`, 5.07328`,
1.28789`}, {9.24527`, 4.88148`, 1.04579`}, {8.46892`, 5.06658`,
0.`}, {9.27026`, 4.26524`, 0.`}};
a = ListDensityPlot[data]
b = ListPlot[data[[All, 1 ;; 2]]];
Show[a, b]
I chose to make a density plot with it which give me this nice result :
But it seems to be a problem with the boundaries because if I plot the coordinates over the density plot, the density plot has created an additional undesirable region. The boundaries should pass through the outer blue points.
Any idea how to fix that ?
Thanks !
As I have mentioned already in the comment, the main problem lies in the fact that there is no unique way to define a concave region only by providing the interior points. That is why ListDensityPlot
automatically creates a convex hull of your points and uses this as a plotting region.
You can, however, create a concave hull. We can use code from this answer and manually tweak the parameter alpha
to obtain a desired concave region of interest:
concaveHullRegion[points_, alpha_] :=
Module[{dtri, outsideregion, boundaryLineQ},
dtri = Union[
Sort /@ Flatten[List @@@ MeshCells[DelaunayMesh[points], 1], 1]];
outsideregion[center_, plist2_] :=
Module[{empty = True, n = 1,
plist3 = SortBy[plist2, Norm[# - center] &]},
Norm[plist3[[1]] - center] > alpha];
boundaryLineQ[plist_, {id1_, id2_}] :=
Module[{p1 = plist[[id1]], p2 = plist[[id2]], center1, center2,
lhalf}, lhalf = Norm[p2 - p1]/2;
If[lhalf > alpha, False,
center1 = (p2 + p1)/2 +
Sqrt[(alpha/lhalf)^2 - 1] {{0, -1}, {1, 0}} . ((p2 - p1)/2);
center2 = (p2 + p1)/2 +
Sqrt[(alpha/lhalf)^2 - 1] {{0, 1}, {-1, 0}} . ((p2 - p1)/2);
Xor @@ (outsideregion[#,
Delete[plist, {{id1}, {id2}}]] & /@ {center1, center2})]];
BoundaryMeshRegion[points,
Line@Select[dtri, boundaryLineQ[points, #] &]]]
region = concaveHullRegion[data[[All, 1 ;; 2]], .2];
regionMem = RegionMember[region];
a = ListDensityPlot[data,
RegionFunction -> Function[{x, y, z}, regionMem[{x, y}]],
MaxPlotPoints -> 50];
b = ListPlot[data[[All, 1 ;; 2]]];
Show[a, b]
Important note: For this particular case, you have to include a MaxPlotPoints
option, otherwise it does not obey the provided RegionFunction
option. This seems to me as some kind of a weird bug, because it does work properly for other concave regions.
Correct answer by Domen on August 6, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP