TransWikia.com

BCS fit to conductance spectrum (from STS) to get the superconducting energy gap

Mathematica Asked on December 28, 2020

Can someone help me fitting STS spectra using the Dynes formula (Phys. Rev. Lett. 41, 1509 (1978).) to find a superconducting gap?
I try to fit using FindFit in Mathematica but it gives several errors.
I followed a paper PRL 97, 077003 (2006). Below is data and code.

enter image description here

datasc = {{-0.014077264599286`, 
    0.621374900897037`}, {-0.013973006869221`, 
    0.609528968750012`}, {-0.013798116482755`, 
    0.627588351705338`}, {-0.013715858487083`, 
    0.611786648294662`}, {-0.013500742735483`, 
    0.628132880203356`}, {-0.013414668753502`, 
    0.610916468086312`}, {-0.013229439846755`, 
    0.631494845303488`}, {-0.013125118453006`, 
    0.612097140053849`}, {-0.012934051594806`, 
    0.626374435217287`}, {-0.012854012091447`, 
    0.610850134818836`}, {-0.012598842638496`, 
    0.601056568949004`}, {-0.012537885254975`, 
    0.620878264164867`}, {-0.012305973211707`, 
    0.610478738746756`}, {-0.012271085837907`, 
    0.625431259549181`}, {-0.011993571312948`, 
    0.612454822876588`}, {-0.011968504522993`, 
    0.630514986602161`}, {-0.01169664555298`, 
    0.612188638228786`}, {-0.01167678162866`, 
    0.629527622637399`}, {-0.011415394792257`, 
    0.609389576190281`}, {-0.011440316485095`, 
    0.628956782222543`}, {-0.011136623691867`, 
    0.608681193475558`}, {-0.011093343898403`, 
    0.627809689325877`}, {-0.010812429893927`, 
    0.619172855302405`}, {-0.010497534983665`, 
    0.625378781737344`}, {-0.010523435937582`, 
    0.611256245835949`}, {-0.010229403549494`, 
    0.630564416934257`}, {-0.010249464374139`, 
    0.61259620994217`}, {-0.010020419504093`, 
    0.6104029811793`}, {-0.00991285975574`, 
    0.627305507535661`}, {-0.009622607973917`, 
    0.630118010788891`}, {-0.009663123587291`, 
    0.612258942663926`}, {-0.009354332666272`, 
    0.63071887790393`}, {-0.009378609476602`, 
    0.615652117629415`}, {-0.009080717801676`, 
    0.621758398491997`}, {-0.00899056445973`, 
    0.608948476815756`}, {-0.00872228970898`, 
    0.613673954098563`}, {-0.008425875070833`, 
    0.619662025118672`}, {-0.008425515616974`, 
    0.60820742882466`}, {-0.008134027840954`, 
    0.614712501770054`}, {-0.007846240932651`, 
    0.618434374838869`}, {-0.007550654740761`, 
    0.615054113172628`}, {-0.007243325886054`, 
    0.613828943960593`}, {-0.006967183962889`, 
    0.612283062538786`}, {-0.00667551645994`, 
    0.613060837337174`}, {-0.006383880213848`, 
    0.614834663987215`}, {-0.006092299644033`, 
    0.618382707998014`}, {-0.005800672188932`, 
    0.620436674231333`}, {-0.005509127759859`, 
    0.625136403195606`}, {-0.005217667333589`, 
    0.632513021511196`}, {-0.004926105322533`, 
    0.636652471308915`}, {-0.004634582382549`, 
    0.642036985921199`}, {-0.004343031116038`, 
    0.646518828542922`}, {-0.004051622458938`, 
    0.655545157737814`}, {-0.003772250036151`, 
    0.667865972712596`}, {-0.00366713516368`, 
    0.688545606658834`}, {-0.00342450607074`, 
    0.698472452924415`}, {-0.003286289322349`, 
    0.716250472069554`}, {-0.003154001950943`, 
    0.729326953042744`}, {-0.003048503809543`, 
    0.744022417233924`}, {-0.003151844983597`, 
    0.71340550765073`}, {-0.002971519290126`, 
    0.761467595625831`}, {-0.003019708573044`, 
    0.727771680199391`}, {-0.002844498158325`, 
    0.777883960707346`}, {-0.002914154166045`, 
    0.744195074904004`}, {-0.002727189643915`, 
    0.79530874343943`}, {-0.002821826293555`, 
    0.759592723742558`}, {-0.002642968470188`, 
    0.812644105982333`}, {-0.002519036965884`, 
    0.828466329636686`}, {-0.002336845987854`, 
    0.838391107698959`}, {-0.002108221985937`, 
    0.835012980714093`}, {-0.002103304565986`, 
    0.819148302333172`}, {-0.001978245554458`, 
    0.802980128550625`}, {-0.001949083937668`, 
    0.787003887789556`}, {-0.001920590002079`, 
    0.770965466141595`}, {-0.0018714044611`, 
    0.752794371757219`}, {-0.001819478464308`, 
    0.736917697110244`}, {-0.001777445805495`, 
    0.716224398641115`}, {-0.001724471539087`, 
    0.689988937162361`}, {-0.001656483721415`, 
    0.66416779593861`}, {-0.001637990051923`, 
    0.638184611063144`}, {-0.001565886851625`, 
    0.608714585043004`}, {-0.001664019228756`, 
    0.622625088363212`}, {-0.001506699396215`, 
    0.573874343293045`}, {-0.00146264231169`, 
    0.543083681119503`}, {-0.001530471701334`, 
    0.592023670025779`}, {-0.001418620991149`, 
    0.513432697917294`}, {-0.00137456477642`, 
    0.482669753258076`}, {-0.001300483187387`, 
    0.445748666613443`}, {-0.001245781717195`, 
    0.417494005312882`}, {-0.00134184047482`, 
    0.496133622820742`}, {-0.001314367748511`, 
    0.46569203555471`}, {-0.001209185192296`, 
    0.388337247189158`}, {-0.001143087887211`, 
    0.35938374354704`}, {-0.001101323842015`, 
    0.331246049306193`}, {-0.001049368078854`, 
    0.302257615281949`}, {-0.001003410149356`, 
    0.274270056819032`}, {-0.000953298968899`, 
    0.246721503992733`}, {-0.000893540464598`, 
    0.223598485618516`}, {-0.000857309446664`, 
    0.201150358390479`}, {-0.000799688292059`, 
    0.180361979756463`}, {-0.000730238990537`, 
    0.160279144188762`}, {-0.00069434644365`, 
    0.143200149306438`}, {-0.000627583257036`, 
    0.128236496969664`}, {-0.000562644175495`, 
    0.111042234053786`}, {-0.000454165263903`, 
    0.094630174611252`}, {-0.000427165060343`, 
    0.079246312279387`}, {-0.000277052304208`, 
    0.067545617483627`}, {8.95723930117998`*^-7, 
    0.068958320030246`}, {0.000250036883371`, 
    0.08940576022664`}, {0.000375147120137`, 
    0.111446293341068`}, {0.000470956046531`, 
    0.133554762342206`}, {0.000523247248205`, 
    0.153229800614112`}, {0.0006304134636`, 
    0.178648993321026`}, {0.000591135347893`, 
    0.162777677199165`}, {0.000676058949982`, 
    0.202869086719592`}, {0.000706151791654`, 
    0.223368574068378`}, {0.000775243121094`, 
    0.243535879071121`}, {0.000802254940545`, 
    0.265699538859238`}, {0.000860884410613`, 
    0.290390128813601`}, {0.000903531331643`, 
    0.315529618091829`}, {0.000938897600098`, 
    0.339437697197663`}, {0.001008855835747`, 
    0.371780121885675`}, {0.000951847620589`, 
    0.357559558626954`}, {0.001047689470837`, 
    0.401815553667819`}, {0.000995097994467`, 
    0.38768535178627`}, {0.001112908345438`, 
    0.436063977458799`}, {0.001055986612901`, 
    0.419087501347263`}, {0.001158892131484`, 
    0.463587298634479`}, {0.001196109825749`, 
    0.493753257730929`}, {0.001098331579813`, 
    0.478065596476135`}, {0.001259259532789`, 
    0.52559173632938`}, {0.001150335176095`, 
    0.510929577156858`}, {0.001299111304853`, 
    0.558391812551469`}, {0.001255330866771`, 
    0.545157398709772`}, {0.00135106332732`, 
    0.592899278787421`}, {0.001316248853628`, 
    0.575623674551817`}, {0.00141536011533`, 
    0.621322252628074`}, {0.001451774093575`, 
    0.651003675295928`}, {0.001521513965593`, 
    0.682020085469781`}, {0.001574186230706`, 
    0.705647571180845`}, {0.001437128562864`, 
    0.667029187572421`}, {0.001438074082797`, 
    0.636898619059911`}, {0.001608270198757`, 
    0.730816389215224`}, {0.001681262801214`, 
    0.752495373424801`}, {0.001709224147172`, 
    0.771484847023913`}, {0.001761331768095`, 
    0.792908691603088`}, {0.0018770060158`, 
    0.81615678326117`}, {0.001986951268767`, 
    0.835152564287953`}, {0.00222907134579`, 
    0.833945152048013`}, {0.002377082821118`, 
    0.817751153372454`}, {0.002495510898134`, 
    0.801175839901887`}, {0.002566092187385`, 
    0.785259501295318`}, {0.002668605150616`, 
    0.770341208095317`}, {0.002798648613402`, 
    0.751643034102159`}, {0.002706188224861`, 
    0.787413931450476`}, {0.00291853329353`, 
    0.731158192142659`}, {0.002812817086329`, 
    0.769598043754509`}, {0.003046509590189`, 
    0.716544884532343`}, {0.002959265230404`, 
    0.750408286944645`}, {0.003201753171143`, 
    0.702890348459542`}, {0.003349084026966`, 
    0.686638518852289`}, {0.003528961284927`, 
    0.670189038780854`}, {0.00377255205135`, 
    0.659672218749916`}, {0.003955210654086`, 
    0.648481954534802`}, {0.004205465025327`, 
    0.643050983047486`}, {0.004451245919526`, 
    0.638411149350498`}, {0.004703488566741`, 
    0.637524053889655`}, {0.004828823680508`, 
    0.627189848481303`}, {0.005097681631404`, 
    0.630526908705533`}, {0.005365991413525`, 
    0.630029189219484`}, {0.005572075572802`, 
    0.624166122929211`}, {0.005841576322171`, 
    0.625955419680669`}, {0.006108745354861`, 
    0.62157040947486`}, {0.006314801704728`, 
    0.616593536376132`}, {0.006558201509692`, 
    0.617685045175992`}, {0.006734746274635`, 
    0.612701290452214`}, {0.006986980600888`, 
    0.622668612296609`}, {0.007257507514469`, 
    0.620605412421748`}, {0.007376081086264`, 
    0.612974386079443`}, {0.007578027710992`, 
    0.624634163722843`}, {0.007835679906185`, 
    0.618174732063782`}, {0.00810276968715`, 
    0.615951054739356`}, {0.008174396458644`, 
    0.608505515053486`}, {0.008450441761347`, 
    0.610038605678995`}, {0.008598823165027`, 
    0.603803129256345`}, {0.008780928787131`, 
    0.616447916194029`}, {0.00904918817906`, 
    0.617555964123237`}, {0.00933196212934`, 
    0.620067409192536`}, {0.009476559824052`, 
    0.612899604048426`}, {0.00964301669801`, 
    0.622727280921563`}, {0.009883347450192`, 
    0.611642062538332`}, {0.010163085871242`, 
    0.612299732862663`}, {0.010431265569676`, 
    0.615947346818052`}, {0.010637433157183`, 
    0.607425700953146`}, {0.010905638424187`, 
    0.610258529846062`}, {0.011209916269718`, 
    0.60946059574565`}, {0.011177702993744`, 
    0.601949480407052`}, {0.011495108099969`, 
    0.617518462096271`}, {0.011739617968388`, 
    0.610071926408163`}, {0.011791132926655`, 
    0.630339751037249`}, {0.012017833524653`, 
    0.61478334624002`}, {0.012089305980085`, 
    0.635062973292159`}, {0.012315723272229`, 
    0.610875440177862`}, {0.012363474852439`, 
    0.630115360084819`}, {0.012399329072465`, 
    0.614257714496783`}, {0.012655359199836`, 
    0.623983025162363`}, {0.01265582023848`, 
    0.609291260350478`}, {0.01293394180091`, 
    0.619221694141888`}, {0.012930047977916`, 
    0.602467749489191`}, {0.013105420704901`, 
    0.59459376511476`}, {0.01337198399432`, 
    0.603150433981797`}, {0.013413840920136`, 
    0.583789369335022`}, {0.013663600411843`, 
    0.605556131025231`}, {0.013667001281174`, 
    0.581684024125753`}, {0.013815887797337`, 
    0.581365491012884`}, {0.013963768803193`, 
    0.599508498930052`}, {0.01390282037346`, 
    0.587616974098408`}, {0.014114444925602`, 0.604028907955355`}};
    ListPlot[%]
    kB = 8.617 10^-5;
    q = 1.60217 10^-19;
    T = 3.2;
    DOS = NIntegrate[
       No Re[(En - I [CapitalGamma])/
         Sqrt[(En - I [CapitalGamma])^2 + [CapitalDelta]^2]] (-D[1/(
           Exp[(En - V)/(kB T)] + 1), V]), {En, 0, 10}, 
       MaxRecursion -> 100];
    FindFit[datasc, DOS, {[CapitalGamma], [CapitalDelta], No}, V]

One Answer

Data can be scaled to mV as

data = Table[{datasc[[i, 1]] 10^3, datasc[[i, 2]]}, {i, 
    Length[datasc]}];

Then we use parameter $10^{-3}/(kT)=3.6265521643263314$ and function (we put x=Ea-V)

dos[No_?NumericQ, [CapitalGamma]_?NumericQ, [CapitalDelta]_?
    NumericQ, V_?NumericQ] := 
  No Sign[V] NIntegrate[ 
     Re[(x + V - I [CapitalGamma])/
        Sqrt[(x + V - I [CapitalGamma])^2 - [CapitalDelta]^2]] ( (
       E^(3.6265521643263314 x))/(1 + E^(
         3.6265521643263314 x))^2), {x, -60, 60}, 
     PrecisionGoal -> 5] // Quiet; 

The best fit with this function is

ff = 
 FindFit[data, 
  dos[No, [CapitalGamma], [CapitalDelta], 
   V], {No, [CapitalGamma], [CapitalDelta]}, V]

Out[]= {No -> 2.22042, [CapitalGamma] -> 
  0.249188, [CapitalDelta] -> 1.54661}

It looks with data as follows

Show[ListPlot[data, PlotRange -> All, Frame -> True, 
  FrameLabel -> {"Bias voltag (mV)", "Normalized Conductance"}], 
 Plot[dos[No, [CapitalGamma], [CapitalDelta], V] /. ff, {V, -15, 
   15}, PlotRange -> All]]

Figure 1

It is not the best fit since we used Sign[V]. Probably it can be corrected around V=0. For instance, we can use Abs instead of Re and Infinity as a limit of integration, but it is not much better than version shown in Figure 1:

dos1[
   No_?NumericQ, [CapitalGamma]_?NumericQ, [CapitalDelta]_?NumericQ,
    V_?NumericQ] := -No NIntegrate[ 
     Abs[(x + V - I [CapitalGamma])/
        Sqrt[(x + V - I [CapitalGamma])^2 - [CapitalDelta]^2]] ( (
       E^(3.6265521643263314` x))/(1 + E^(
         3.6265521643263314` x))^2), {x, -Infinity, Infinity}, 
     PrecisionGoal -> 5] // Quiet;

 f1 = 
 FindFit[data, 
  dos1[No, [CapitalGamma], [CapitalDelta], 
   V], {No, [CapitalGamma], [CapitalDelta]}, V]

(*Out[]= {No -> -2.08873, [CapitalGamma] -> 
  0.360637, [CapitalDelta] -> -2.04026}*)

 Show[
 ListPlot[data, PlotRange -> All, Frame -> True, 
  FrameLabel -> {"Bias voltag (mV)", "Normalized Conductance"}], 
 Plot[dos1[No, [CapitalGamma], [CapitalDelta], V] /. f1, {V, -15, 
   15}, PlotRange -> All]]

Figure 2 Now we can fixed $Gamma=0.2$ as in the paper and define new function

[CapitalGamma] = .2; 
dos2[No_?NumericQ, N1_?NumericQ, [CapitalDelta]_?NumericQ, 
  V_?NumericQ] := 
 NIntegrate[ (No Sign[
        V] Re[(x + V - I [CapitalGamma])/
         Sqrt[(x + V - I [CapitalGamma])^2 - [CapitalDelta]^2]] - 
      N1 Abs[(x + V - I [CapitalGamma])/
         Sqrt[(x + V - I [CapitalGamma])^2 - [CapitalDelta]^2]]) ( (
     E^(3.6265521643263314` x))/(1 + E^(
       3.6265521643263314` x))^2), {x, -60, 60}, PrecisionGoal -> 5] //
   Quiet;

With this function we have

f2 = 
 FindFit[data, 
  dos2[No, N1, [CapitalDelta], V], {No, N1, [CapitalDelta]}, V]

(*Out[]= {No -> 1.79784, N1 -> -0.386709, [CapitalDelta] -> 1.62088}*)

It is looks much better than dos, dos1, and we can improve it by varying $Gamma$

Show[ListPlot[data, PlotRange -> All, Frame -> True, 
  FrameLabel -> {"Bias voltag (mV)", "Normalized Conductance"}], 
 Plot[dos2[No, N1, [CapitalDelta], V] /. f2, {V, -15, 15}, 
  PlotRange -> All]]

Figure 3

Answered by Alex Trounev on December 28, 2020

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP