Mathematica Asked by Qin-Tao Song on April 23, 2021
I have a difficulty in calculating the following integral with Mathematica:
$$
int^{pi}_{0}rm dtheta_1frac{ sin^2theta_1[2(2-costheta_1costheta)^2+(sinthetasintheta_1)^2]}{[(2-costheta_1costheta)^2-(sinthetasintheta_1)^2]^{5/2}},
$$
where $ pi>theta>0 $.
Here is the code:
Integrate[Sin[th1]^2*(2*(2 - Cos[th]*Cos[th1])^2 + (Sin[th]*Sin[th1])^2)/((2 - Cos[th]*Cos[th1])^2 - (Sin[th]*Sin[th1])^2)^(5/2), {th1, 0, Pi}]
If numerical solution is sufficient:
int[th_?NumericQ] :=NIntegrate[Sin[th1]^2*(2*(2 - Cos[th]*Cos[th1])^2 +(Sin[th]*Sin[th1])^2)/((2 - Cos[th]*Cos[th1])^2 - (Sin[th]*Sin[th1])^2)^(5/2)
, {th1, 0, Pi}]
Plot[int[th], {th, 0, Pi}, PlotRange -> {0, 1}]
Answered by Ulrich Neumann on April 23, 2021
Making use of
f[x_?NumericQ] = NIntegrate[ Sin[th1]^2*(2*(2 - Cos[x]*Cos[th1])^2 + (Sin[x]*
Sin[th1])^2)/((2 - Cos[x]*Cos[th1])^2 - (Sin[x]*Sin[th1])^2)^(5/2), {th1, 0, Pi}]
,one obtains
f[Pi/4]
0.676581
and
Plot[f[x], {x, 0, Pi}]
Answered by user64494 on April 23, 2021
The simplest answer I could come up with is
((Sqrt[2]*
Sqrt[5 + Cos[2*[Theta]] + 4*I*Sqrt[3]*Sin[[Theta]]])/(9*(7 -
Cos[2*[Theta]])))*(2*(3 - 2*I*Sqrt[3]*Sin[[Theta]])*
EllipticK[-((I*8*Sqrt[3]*Sin[[Theta]])/(5 + Cos[2*[Theta]] -
I*4*Sqrt[3]*Sin[[Theta]]))] -
I*(7 - Cos[2*[Theta]])*
EllipticE[
1 - (I*8*Sqrt[3]*Sin[[Theta]])/(5 + Cos[2*[Theta]] +
I*4*Sqrt[3]*Sin[[Theta]])]) - ((Sqrt[2]*
Sqrt[5 + Cos[2*[Theta]] - 4*Sqrt[3]*I*Sin[[Theta]]])/(9*(7 -
Cos[2*[Theta]])))*
(8*Sqrt[3]*Sin[[Theta]]*
EllipticK[
1 - (I*8*Sqrt[3]*Sin[[Theta]])/(5 + Cos[2*[Theta]] +
I*4*Sqrt[3]*Sin[[Theta]])] -
I*(7 - Cos[2*[Theta]])*
EllipticE[
1 + (I*8*Sqrt[3]*Sin[[Theta]])/(5 + Cos[2*[Theta]] -
I*4*Sqrt[3]*Sin[[Theta]])])
I have no idea how to treat the complex moduli further...
Answered by Andreas on April 23, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP