Mathematica Asked by Ketil Tveiten on March 29, 2021
Is there a slick way to make CoefficientList
(and the other similar functions, CoefficientRules
etc.) work for Laurent polynomials (i.e. where negative exponents can occur), if I don’t know a priori what the largest negative exponents are? I can of course do some ugly ad hoc thing by hand, but I’m looking for a method that works generally.
Any tips?
As referred to in the comments:
For single variable polynomial:
coeffl[pol_, s_Symbol] := Module[{e, mod},
e = Exponent[pol, s, Min];
mod = s^(-e) pol;
CoefficientList[mod, s]
]
will produce coefficient list.
To obtain cofficient of exponent:
coeff[pol_, s_Symbol, exp_] := Module[{e, mod, M, cl},
e = Exponent[pol, s, Min];
M = Exponent[pol, s, Max];
mod = s^(-e) pol;
cl = CoefficientList[mod, s];
exp /. Thread[Range[e, M] -> cl]
]
Test example:
coeffl[1 - 2/z^3 - 1/z^2 + 2 z + 3 z^2 + 4 z^3 + 5 z^4 + 6 z^5,z]
yields:
{-2, -1, 0, 1, 2, 3, 4, 5, 6}
and
coeff[1 - 2/z^3 - 1/z^2 + 2 z + 3 z^2 + 4 z^3 + 5 z^4 + 6 z^5,z,-3]
yields -2
EDIT
Above not ideal (general):
coefflg[pol_, s_Symbol] := Module[{e, mod},
e = Exponent[pol, s, Min];
If[e < 0,
mod = s^(-e) pol;
CoefficientList[mod, s],
CoefficientList[pol, s]
]
]
coeffg[pol_, s_Symbol, exp_] := Module[{e, mod, M, cl},
e = Exponent[pol, s, Min];
M = Exponent[pol, s, Max];
If[e < 0,
mod = s^(-e) pol;
cl = CoefficientList[mod, s];
exp /. Thread[Range[e, M] -> cl]
, Coefficient[pol, s, exp]
]
]
Answered by ubpdqn on March 29, 2021
I propose a relatively compact method
coeffrul[pol_, x_Symbol] := {# -> Coefficient[pol, x, #]} & /@ Exponent[pol, x, List];
coeffrul[x^-1 + 2 x^1.5 + 3 x^3, x]
{{-1 -> 1}, {1.5 -> 2}, {3 -> 3}}
It works not only with integer powers.
Answered by ybeltukov on March 29, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP