Geographic Information Systems Asked by Lilian Guimarães on October 10, 2020
After sorting my image using training data,
//***********************************************************************
// SEPARATE TEST AND TRAIN SAMPLES
//***********************************************************************
// delimitate samples to test and train
var trainSize = dataset.size().multiply(0.7).int()
var testSize = dataset.size().multiply(0.3).int()
var dataTrain = dadosRandomizados
.sort("randomPreClassificacao")
.toList(trainSize, 1)
var dataTest = dadosRandomizados
.sort("randomPreClassificacao")
.toList(testSize, trainSize)
//***********************************************************************
// CREATE CLASSIFIER - create an choosen classifier - ten trees
//***********************************************************************
var classificador = ee.Classifier.randomForest(10)
//***********************************************************************
// TRAIN CLASSIFIER
//***********************************************************************
//train the classifier
var classificadorTreinado = classificador.train({
features: dataTrain,
classProperty: 'CLASS',
inputProperties: bands
})
var imagemClassificada = addndvi_2018.select(bands).classify(classificadorTreinado)
I want to use my test data to calculate the error matrix, the accuracy of the consumer and the producer.
var testClassificador = testSize.classify(classificadorTreinado)
var errorMatrix = testClassificado.errorMatrix('CLASS', 'classification')
print('errorMatrix:', errorMatrix)
print('accuracy:', errorMatrix.accuracy())
print('consumersAccuracy:', errorMatrix.consumersAccuracy())
print('producersAccuracy:', errorMatrix.producersAccuracy())
However, I am having a global variable declaration error, whereas for Earth Engine there are reserved objects.
testSize.classify is not a function
Here is my code in Earth Engine
You are trying to classify a ee.Number
(testSize).
This is not how it's usually done, but to keep your logic:
// create FeatureCollections with the Lists
var dataTrain = ee.FeatureCollection(dadosRandomizados
.sort("randomPreClassificacao")
.toList(trainSize, 1))
var dataTest = ee.FeatureCollection(dadosRandomizados
.sort("randomPreClassificacao")
.toList(testSize, trainSize))
// classify the FeatueCollection
var testClassificador = dataTest.classify(classificadorTreinado)
var errorMatrix = testClassificador.errorMatrix('CLASS', 'classification')
print(errorMatrix)
The usual way is to use the random
column generated by FeatureCollection.randomColumns
Answered by Rodrigo E. Principe on October 10, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP