Geographic Information Systems Asked on June 24, 2021
I am wondering if there’s a clever way to use the dissolve()
method of GeoPandas with a spatio temporal geodataframe without losing the temporal part.
I have a dataset where for different days of the year the same geometries could repeat. I need to aggregate (dissolve) these geometries by ID but I need to do it for each day.
My geodataframe looks like this:
geometry DATE ID VOL
POINT 2020-01-01 1 100
POINT 2020-01-01 1 50
POINT 2020-01-01 2 50
POINT 2020-01-01 2 50
POINT 2020-01-02 1 70
POINT 2020-01-02 1 40
POINT 2020-01-02 2 30
POINT 2020-01-02 2 70
...
My desired output should be:
geometry DATE ID VOL
MULTIPOINT 2020-01-01 1 150
MULTIPOINT 2020-01-01 2 100
MULTIPOINT 2020-01-02 1 110
MULTIPOINT 2020-01-02 2 100
With gdf.dissolve(by='ID', aggfunc='sum')
the result is missing the temporal information, and I understand why, but, is there a way I can aggregate preserving it?
geometry ID VOL
MULTIPOINT 1 260
MULTIPOINT 2 200
Here is the code in order to replicate the test:
import geopandas as gpd
from shapely.geometry import Point
d = {
'geometry': [Point(1,2), Point(2,1), Point(3,4), Point(4,3),
Point(1,2), Point(2,1), Point(3,4), Point(4,3)],
'DATE': ['2020-01-01', '2020-01-01', '2020-01-01', '2020-01-01',
'2020-01-02', '2020-01-02', '2020-01-02', '2020-01-02'],
'ID': [1, 1, 2, 2, 1, 1, 2, 2],
'VOL': [100, 50, 50, 50, 70, 40, 30, 70 ]
}
gdf = gpd.GeoDataFrame(d, crs="EPSG:4326")
dissolved = gdf.dissolve(by='ID', aggfunc='sum')
Change the last line as:
dissolved = gdf.dissolve(by=['DATE', 'ID'], aggfunc='sum').reset_index()
Result:
DATE ID geometry VOL
0 2020-01-01 1 MULTIPOINT (1 2, 2 1) 150
1 2020-01-01 2 MULTIPOINT (3 4, 4 3) 100
2 2020-01-02 1 MULTIPOINT (1 2, 2 1) 110
3 2020-01-02 2 MULTIPOINT (3 4, 4 3) 100
Correct answer by Kadir Şahbaz on June 24, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP