Engineering Asked on May 4, 2021
At a point $ P $ on the surface of a body, the rosette of 45 gauges indicated in the Figure is glued, whose readings are $varepsilon_1 = 2 times 10^{-6}$ , $varepsilon_2 = 1 times 10^{-6}$ e $varepsilon_3 = -4 times 10^{-6}$, respectively in elements 1, 2 and 3. Calculate, using the Mohr circle, the principal stresses and directions main points at point $ P $, knowing that the material of the body presents the following
features: $ E = 200 $ GPa and $nu$ = 0.3. (note: assume a flat state of tension applied to the body).
I use
begin{equation}
begin{cases}
varepsilon_mathrm{1} equiv varepsilon (alpha=0^circ) & =
varepsilon_{xx}cos^2alpha_1 + varepsilon_{yy}sin^2alpha_1 +
gamma_{xy}sinalpha_1cosalpha_1
varepsilon_mathrm{2} equiv varepsilon (alpha=+45^circ) & =
varepsilon_{xx}cos^2alpha_2 + varepsilon_{yy}sin^2alpha_2 +
gamma_{xy}sinalpha_2cosalpha_2
varepsilon_mathrm{3} equiv varepsilon (alpha=90^circ) & =
varepsilon_{xx}cos^2alpha_3 + varepsilon_{yy}sin^2alpha_3 +
gamma_{xy}sinalpha_3cosalpha_3
end{cases}
end{equation}
and after some calculations i arrive to the deformation matrix at $P$ point:
begin{equation}
underline{underline{D}} equiv [D] equiv D_{ij} =
begin{bmatrix}
varepsilon_{xx} & varepsilon_{xy} & varepsilon_{xz}
varepsilon_{yx} & varepsilon_{yy} & varepsilon_{yz}
varepsilon_{zx} & varepsilon_{zy} & varepsilon_{zz}
end{bmatrix} =
begin{bmatrix}
varepsilon_{xx} & gamma_{xy}/2 & gamma_{xz}/2
gamma_{yx}/2 & varepsilon_{yy} & gamma_{yz}/2
gamma_{zx}/2 & gamma_{zy}/2 & varepsilon_{zz}
end{bmatrix} =
begin{bmatrix}
2 & 2 & 0
2 & -4 & 0
0 & 0 & 0
end{bmatrix} times 10^{-6}
end{equation}
i’ve done $|epsilon_{ij}-delta_{ij}epsilon|=0$ and got the values $epsilon_{I}=-1+sqrt{13}$,
$epsilon_{II}=0$, and $epsilon_{III}=-1-sqrt{13}$,
and i use hookes law and got
$sigma_{I}=frac{E}{(1+v)(1-2v)}((1-v)epsilon_{I}+vepsilon_{II}+vepsilon_{III})=1.70times 10^{5}$
However the solutions say that the tension matrix is
begin{equation}
underline{underline{sigma}} = [sigma] = sigma_{ij} =
begin{bmatrix}
0.175824 & 0.307692 & 0
0.307692 & -0.747252 & 0
0 & 0 & 0
end{bmatrix}~mbox{[MPa]}
end{equation}
But i don’t understand how can i arrive to the tension matrix. I thought is through hookes law but i guess i’m making a mistake somewhere….Could someone explain me how to i get the tension matrix?
In the solutions the deformation matrix is
begin{equation}
D =
begin{bmatrix}
2 & 2 & 0
2 & -4 & 0
0 & 0 & varepsilon_{zz}
end{bmatrix} times 10^{-6}
end{equation}
which is different from mine but i also dont understand why $varepsilon_{zz}$ is not 0
"A flat state of tension" seems like a computer translation that should be "plane stress."
You seem to have used the formulas for plane strain.
Answered by alephzero on May 4, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP