Data Science Asked on September 28, 2021
I am getting the following error while using xgboost.cv()
(scikit-learn interface). I am working on a regression problem. Below is the code and trace. No idea why it is giving this error.
from hyperopt import hp
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
space = {
'n_estimators' : hp.quniform('n_estimators', 100, 1201, 100),
'eta' : hp.loguniform('learning_rate', np.log(0.01), np.log(0.2)),
'max_depth' : hp.choice('max_depth', np.arange(1, 14, dtype=int)),
'min_child_weight' : hp.quniform('min_child_weight', 1, 6, 1),
'subsample' : hp.quniform('subsample', 0.5, 1, 0.05),
'gamma' : hp.quniform('gamma', 0.5, 1, 0.05),
'colsample_bytree' : hp.quniform('colsample_bytree', 0.5, 1, 0.05),
'eval_metric': ['rmse'],
'objective': ['reg:linear'],
'n_jobs' : [-1]
}
dtrain = xgb.DMatrix(X_train, label=y_train)
cv_results = xgb.cv(space,dtrain,num_boost_round = 1000, nfold= 5, obj = ['reg:squarederror'],
stratified = False, early_stopping_rounds = 100, metrics="rmse", seed = 44)
cv_results
The following is the part of the trace:
---------------------------------------------------------------------------
XGBoostError Traceback (most recent call last)
<ipython-input-19-b45243537e3b> in <module>
1 dtrain = xgb.DMatrix(X_train, label=y_train)
2 cv_results = xgb.cv(space,dtrain,num_boost_round = 1000, nfold= 5, obj = ['reg:squarederror'],
----> 3 stratified = False, early_stopping_rounds = 100, metrics="rmse", seed = 44)
4
5 cv_results
...
...
...
XGBoostError:src/objective/objective.cc:23: Unknown objective function ['reg:linear']nnStack trace returned 7 entries:n[bt]
Any suggestion as to how to avoid this would be helpful.
Thanks
You've passed an objective function reg:linear
in space
; there is no such objective function. The objective reg:squarederror
that you pass to cv
should be fine.
Answered by Ben Reiniger on September 28, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP