Data Science Asked by theCNN on July 18, 2021
I want to write a custom loss function that uses the intermediate result of a trained discriminator.
the loss function compares images.
the loss function is for recovering the latent vector of an image from a gan.
im relatively new to this.
im using a reference code to test it out.
https://github.com/utkd/gans/blob/master/cifar10dcgan.ipynb
for full reference code im using
below is an example
https://m.youtube.com/watch?v=dCKbRCUyop8
Watch at 17:30
below is the discriminator code
def get_discriminator(input_layer):
'''
Requires the input layer as input, outputs the model and the final layer
'''
hid = Conv2D(128, kernel_size=3, strides=1, padding='same')(input_layer)
hid = BatchNormalization(momentum=0.9)(hid)
hid = LeakyReLU(alpha=0.1)(hid)
hid = Conv2D(128, kernel_size=4, strides=2, padding='same')(hid)
hid = BatchNormalization(momentum=0.9)(hid)
hid = LeakyReLU(alpha=0.1)(hid)
hid = Conv2D(128, kernel_size=4, strides=2, padding='same')(hid)
hid = BatchNormalization(momentum=0.9)(hid)
hid = LeakyReLU(alpha=0.1)(hid)
for my loss function i want to use the intermediate result from the layer above
hid = Conv2D(128, kernel_size=4, strides=2, padding='same')(hid)
hid = BatchNormalization(momentum=0.9)(hid)
hid = LeakyReLU(alpha=0.1)(hid)
hid = Flatten()(hid)
hid = Dropout(0.4)(hid)
out = Dense(1, activation='sigmoid')(hid)
model = Model(input_layer, out)
model.summary()
return model, out
below is the code im planning to use
zp = tf.Variable(np.random.normal(size=(1,l_size)), dtype=tf.float32)
start_img = Image.open(folder + "foo_00.png")
start_img.resize((img_x, img_y), Image.ANTIALIAS)
start_img_np = np.array(start_img)/255
fz = tf.Variable(start_img_np, tf.float32)
fz = tf.expand_dims(fz, 0)
fz = tf.cast(fz,tf.float32)
# variable 'generator' = trained model that is loaded.
# Define the optimization problem
fzp = generator(zp)
loss = tf.losses.mean_squared_error(labels=fz, predictions=fzp)
here is where i want it to go something like
fzpD= discriminator_intermediate(fpz)
fzD= discriminator_intermediate(fz)
loss = tf.losses.mean_squared_error(labels=fzD, predictions=fzpD)
```
Model
class allows you define multiple outputs: official tensorflow (keras) documentation.
...
hid = LeakyReLU(alpha=0.1)(hid) # the layer you want to use
intermediate = hid
...
model = Model(input_layer, outputs=[out, intermediate])
Then, if you train using model.fit
or model.fit_generator
, you simply need to provide the labels as a tuple of (expected_output, expected_intermediate_layer).
Answered by Mark Loyman on July 18, 2021
the soultion is simple , just pass X,Y into thse individual layers and operate as normal
here is an example
class mymodel(Model):
def __init__(self,chandim=-1):
#just an example
super(mymodel, self).__init__()
self.gdn1 = Dense(128 * 16 * 16, activation='relu')
self.gbn1 = BatchNormalization(momentum=0.9)
self.glr1 = LeakyReLU(alpha=0.1)
self.grs1 = Reshape((16, 16, 128))
self.gcn2 = Conv2D(128, kernel_size=5, strides=1,padding='same')
self.gbn2 = BatchNormalization(momentum=0.9)
#self.gdp2 = Dropout(0.5)
self.glr2 = LeakyReLU(alpha=0.1)
self.gcn3 = Conv2DTranspose(128, 4, strides=2, padding='same')
self.gbn3 = BatchNormalization(momentum=0.9)
self.glr3 = LeakyReLU(alpha=0.1)
def get_model1(self,input_layer):
hid = self.gdn1(input_layer)
hid = self.gbn1(hid)
hid = self.glr1(hid)
hid = self.grs1(hid)
hid = self.gcn2(hid)
hid = self.gbn2(hid)
hid = self.glr2(hid)
out = Activation("tanh")(hid)
model = Model(input_layer, out)
model.summary()
return model, out
def get_model2(self,input_layer):
hid = self.gcn3(input_layer)
hid = self.gbn3(hid)
hid = self.glr3(hid)
out = Activation("tanh")(hid)
model = Model(input_layer, out)
model.summary()
return model
#Loss Function ----------------------------
def lossFn_model2(self,X,Y)
bx0 = self.gdn1(X)
bx1 = self.gbn1(hid)
bx2 = self.glr1(hid)
bx3 = self.grs1(hid)
#Note Shared Layers
by0 = self.gdn1(Y)
by1 = self.gbn1(hid)
by2 = self.glr1(hid)
by3 = self.grs1(hid)
return tf.math.square(bx3-by3)
```
Answered by theCNN on July 18, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP