TransWikia.com

UNet Model accuracy is stuck at exact 0.5 (neither more or less) (No class imbalance, tried tuning learning rate)

Data Science Asked by Sulphur on July 27, 2021

This is using PyTorch

I have been trying to implement UNet model on my images, however, my model accuracy is always exact 0.5. Loss does decrease.

I have also checked for class imbalance. I have also tried playing with learning rate. Learning rate affects loss but not the accuracy.

My architecture below ( from here )

""" `UNet` class is based on https://arxiv.org/abs/1505.04597

The U-Net is a convolutional encoder-decoder neural network.
Contextual spatial information (from the decoding,
expansive pathway) about an input tensor is merged with
information representing the localization of details
(from the encoding, compressive pathway).

Modifications to the original paper:
(1) padding is used in 3x3 convolutions to prevent loss
    of border pixels
(2) merging outputs does not require cropping due to (1)
(3) residual connections can be used by specifying
    UNet(merge_mode='add')
(4) if non-parametric upsampling is used in the decoder
    pathway (specified by upmode='upsample'), then an
    additional 1x1 2d convolution occurs after upsampling
    to reduce channel dimensionality by a factor of 2.
    This channel halving happens with the convolution in
    the tranpose convolution (specified by upmode='transpose')


    Arguments:
        in_channels: int, number of channels in the input tensor.
                     Default is 3 for RGB images. Our SPARCS dataset is 13 channel.
              depth: int, number of MaxPools in the U-Net. During training, input size needs to be 
                     (depth-1) times divisible by 2
        start_filts: int, number of convolutional filters for the first conv.
            up_mode: string, type of upconvolution. Choices: 'transpose' for transpose convolution 

"""

class UNet(nn.Module):

    def __init__(self, num_classes, depth, in_channels, start_filts=16, up_mode='transpose', merge_mode='concat'):

        super(UNet, self).__init__()

        if up_mode in ('transpose', 'upsample'):
            self.up_mode = up_mode
        else:
            raise ValueError(""{}" is not a valid mode for upsampling. Only "transpose" and "upsample" are allowed.".format(up_mode))

        if merge_mode in ('concat', 'add'):
            self.merge_mode = merge_mode
        else:
            raise ValueError(""{}" is not a valid mode for merging up and down paths.Only "concat" and "add" are allowed.".format(up_mode))

        # NOTE: up_mode 'upsample' is incompatible with merge_mode 'add'
        if self.up_mode == 'upsample' and self.merge_mode == 'add':
            raise ValueError("up_mode "upsample" is incompatible with merge_mode "add" at the moment "
                             "because it doesn't make sense to use nearest neighbour to reduce depth channels (by half).")

        self.num_classes = num_classes
        self.in_channels = in_channels
        self.start_filts = start_filts
        self.depth = depth

        self.down_convs = []
        self.up_convs = []

        # create the encoder pathway and add to a list
        for i in range(depth):
            ins = self.in_channels if i == 0 else outs
            outs = self.start_filts*(2**i)
            pooling = True if i < depth-1 else False

            down_conv = DownConv(ins, outs, pooling=pooling)
            self.down_convs.append(down_conv)

        # create the decoder pathway and add to a list
        # - careful! decoding only requires depth-1 blocks
        for i in range(depth-1):
            ins = outs
            outs = ins // 2
            up_conv = UpConv(ins, outs, up_mode=up_mode, merge_mode=merge_mode)
            self.up_convs.append(up_conv)


        self.conv_final = conv1x1(outs, self.num_classes)

        # add the list of modules to current module
        self.down_convs = nn.ModuleList(self.down_convs)
        self.up_convs = nn.ModuleList(self.up_convs)

        self.reset_params()

    @staticmethod
    def weight_init(m):
        if isinstance(m, nn.Conv2d):

            #https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/ 
            ##Doc: https://pytorch.org/docs/stable/nn.init.html?highlight=xavier#torch.nn.init.xavier_normal_ 
            init.xavier_normal_(m.weight)
            init.constant_(m.bias, 0)



    def reset_params(self):
        for i, m in enumerate(self.modules()):
            self.weight_init(m)


    def forward(self, x):
        encoder_outs = []

        # encoder pathway, save outputs for merging
        for i, module in enumerate(self.down_convs):
            x, before_pool = module(x)
            encoder_outs.append(before_pool)

        for i, module in enumerate(self.up_convs):
            before_pool = encoder_outs[-(i+2)]
            x = module(before_pool, x)

        # No softmax is used. This means we need to use
        # nn.CrossEntropyLoss is your training script,
        # as this module includes a softmax already.
        x = self.conv_final(x)
        return x

Parameters are :

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x,y = train_sequence[0] ; batch_size = x.shape[0]
model = UNet(num_classes = 2, depth=10, in_channels=5, merge_mode='concat').to(device)
optim = torch.optim.Adam(model.parameters(),lr=0.01, weight_decay=1e-3)
criterion = nn.BCEWithLogitsLoss() #has sigmoid internally
epochs = 1000

My function for calculating loss and accuracy is below:

def get_loss_train(model, train_sequence):
    """
        Calculate loss over train set
    """
    model.eval()
    total_acc = 0
    total_loss = 0
    for idx in range(len(train_sequence)):        
        with torch.no_grad():
            X, y = train_sequence[idx]             
            images = Variable(torch.from_numpy(X)).to(device) # [batch, channel, H, W]
            masks = Variable(torch.from_numpy(y)).to(device) 

            outputs = model(images)
            loss = criterion(outputs, masks)
            preds = torch.argmax(outputs, dim=1).float()
            acc = accuracy_check_for_batch(masks.cpu(), preds.cpu(), images.size()[0])
            total_acc = total_acc + acc
            total_loss = total_loss + loss.cpu().item()
    return total_acc/(len(train_sequence)), total_loss/(len(train_sequence))

This is my first post on this forum so pardon me if I am missing out on any details.

Can someone help me identify as why is accuracy always exact 0.5?

One Answer

If you are using Binary Cross Entropy as your loss function, shouldn't you only have one output. Hence, you should modify this line:

model = UNet(num_classes = 2, depth=10, in_channels=5, merge_mode='concat').to(device)

Correct: model = UNet(num_classes = 1, depth=10, in_channels=5, merge_mode='concat').to(device) You would also have to change the way you calculate your accuracy. Instead of using np.argmax(output), use round(output) to get a 1 or 0.

Another alternative is you can keep everything else and just change your loss function to Categorical Cross Entropy.

Correct answer by Vincent Yong on July 27, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP