Data Science Asked by sonnv on February 23, 2021
I’m using scikitlearn in Python to create some models while trying different kernels. I was surprised to see that rbf was fit in under a second, whereas linear took a minute and poly took hours. Can anyone explain why to help me?
My code:
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt
from sklearn.metrics
import mean_squared_error, r2_score
f = open(datafile)
X = np.empty([0,1], dtype = int)
y = np.array([])
for i in range(100):
my_lines = f.readline().split(" ")
t = np.array([[int(my_lines[0])]])
n = np.array([int(my_lines[1])])
X = np.concatenate((X, t), axis =0 )
y = np.concatenate((y, np.array([int(my_lines[1])])), axis = 0)
f.close()
svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=3)
svr_rbf.fit(X, y)
svr_lin.fit(X, y)
svr_poly.fit(X, y)
The data:
0 22
1 23
2 23
3 23
4 25
5 24
6 25
7 26
8 26
9 30
10 29
11 29
12 30
13 30
14 30
15 31
16 29
17 28
18 29
19 31
20 30
21 30
22 31
23 31
24 30
25 31
26 31
27 30
28 29
29 31
30 33
31 31
32 32
33 30
34 30
35 30
36 29
37 30
38 29
39 29
40 27
41 28
42 28
43 27
44 27
45 28
46 28
47 29
48 29
49 28
50 28
51 29
52 27
53 27
54 28
55 28
56 28
57 30
58 32
59 31
60 30
61 28
62 28
63 30
64 27
65 27
66 28
67 27
68 29
69 33
70 39
71 35
72 34
73 29
74 30
75 28
76 28
77 29
78 27
79 26
80 25
81 17
82 0
83 0
84 29
85 21
86 20
87 18
88 19
89 19
90 19
91 18
92 17
93 18
94 20
95 19
96 20
97 19
98 18
99 18
One option is to speed up your code is to standardize features, removing the mean and scaling to unit variance.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X.reshape(-1, 1))
y = scaler.fit_transform(y.reshape(-1, 1))
After I standardized the data, each model fit in less than 500ms.
Support vector machines (SVMs) need to calcuate the distance between each data. Standardize numbers make the calculations faster.
Answered by Brian Spiering on February 23, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP