Data Science Asked by YogeshKumar on May 20, 2021
I am working on classification problem, My input data is labels and output expected data is labels
I have made X, Y pairs by shifting the X and Y is changed to the categorical value
Labels Count
1 94481
0 65181
2 60448
X Y
2 1.0
1 2.0
1 1.0
2 1.0
2 2.0
encoder = LabelEncoder()
test_labels = to_categorical(encoder.fit_transform(values[:,1]),num_classes=3)
train_X,test_X,train_y,test_y= train_test_split(values[:,0], test_labels,test_size = 0.30,random_state = 42)
print(train_X.shape)
print(train_y.shape)
print(test_X.shape)
print(test_y.shape)
(154076,)
(154076, 3)
(66033,)
(66033, 3)
Converting this to LSTM format
train_X = train_X.reshape(train_X.shape[0],1,1)
test_X = test_X.reshape(test_X.shape[0],1,1)
# configure network
n_batch = 1
n_epoch = 10
n_neurons = 100
ModelArchitecture
tf.keras.backend.clear_session()
model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(n_neurons, batch_input_shape=(n_batch, train_X.shape[1],train_X.shape[2]), stateful=True),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(100, activation = 'relu',kernel_regularizer=regularizers.l2(0.0001)),
tf.keras.layers.Dense(3, activation='softmax')
])
model.summary()
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['acc'])
history = model.fit(train_X,train_y,validation_data=(test_X, test_y),epochs=n_epoch, batch_size=n_batch, verbose=1,shuffle= False)
Validation Accuracy is not Changing
Epoch 1/5
154076/154076 [==============================] - 356s 2ms/step - loss: 1.0844 - acc: 0.4269 - val_loss: 1.0814 - val_acc: 0.4310
Epoch 2/5
154076/154076 [==============================] - 354s 2ms/step - loss: 1.0853 - acc: 0.4256 - val_loss: 1.0813 - val_acc: 0.4310
Epoch 3/5
154076/154076 [==============================] - 355s 2ms/step - loss: 1.0861 - acc: 0.4246 - val_loss: 1.0814 - val_acc: 0.4310
Epoch 4/5
154076/154076 [==============================] - 356s 2ms/step - loss: 1.0874 - acc: 0.4228 - val_loss: 1.0825 - val_acc: 0.4310
Epoch 5/5
154076/154076 [==============================] - 353s 2ms/step - loss: 1.0887 - acc: 0.4208 - val_loss: 1.0828 - val_acc: 0.4310
What can be the changes to improve the model.
Update2
After Increasing the learning rate of Rmsprop to 0.5 , Below is the training loss and validation loss
Epoch 1/10
176087/176087 [==============================] - 370s 2ms/step - loss: 1.4314 - acc: 0.3594 - val_loss: 12.9380 - val_acc: 0.2739
Epoch 2/10
176087/176087 [==============================] - 369s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 4.6767 - val_acc: 0.2854
Epoch 3/10
176087/176087 [==============================] - 371s 2ms/step - loss: 1.3209 - acc: 0.3592 - val_loss: 12.9380 - val_acc: 0.2739
Epoch 4/10
176087/176087 [==============================] - 370s 2ms/step - loss: 1.3209 - acc: 0.3592 - val_loss: 4.6767 - val_acc: 0.2854
Epoch 5/10
176087/176087 [==============================] - 368s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 12.9380 - val_acc: 0.2739
Epoch 6/10
176087/176087 [==============================] - 370s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 4.6767 - val_acc: 0.2854
Epoch 7/10
176087/176087 [==============================] - 368s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 12.9380 - val_acc: 0.2739
Epoch 8/10
176087/176087 [==============================] - 372s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 4.6767 - val_acc: 0.2854
Epoch 9/10
176087/176087 [==============================] - 371s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 12.9379 - val_acc: 0.2739
Epoch 10/10
176087/176087 [==============================] - 369s 2ms/step - loss: 1.3209 - acc: 0.3593 - val_loss: 4.6767 - val_acc: 0.2854
From the documentation: inputs: A 3D tensor with shape [batch, timesteps, feature].
Are you saying that you want 1 input and 1 feature, but you want to output 100 neurons? I would consider adding more timesteps.
train_X = train_X.reshape(train_X.shape[0],10,1)
test_X = test_X.reshape(test_X.shape[0],10,1)
Also, I wouldn't add regularization to a ReLU activation without batch normalization. Actually, I probably would use dropout instead of regularization. Consider that with regularization many ReLU neurons may die.
Answered by FreedomToWin on May 20, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP