Data Science Asked by strateeg32 on March 9, 2021
In an academic paper, they talk about using a nearest neighbour algorithm to predict the cluster of a new point. And how the number of nearest neighbours is set to 10 in their example.
What do they mean with this? The two things I could think of were:
1. Look which 10 points used in the training set (neighbours) are closest and then assign it to the cluster of which the majority of the points come from.
2. Collect one by one the closest points from the training set until you have 10 points that come from one single cluster. That is the cluster to which the point belongs.
What are the other ways to assign a(n) (existing) cluster to a new point?
If the paper didn't elaborate on this, it must mean that they do 1). They look for the 10 closest neighbors of a new point and use majority voting to assign a cluster. On a side note, strange that they use an even number of neighbors, since it may introduce ties.
"What are the other ways to assign a(n) (existing) cluster to a new point?"
There are plenty of ways but it doesn't mean that they are all good! You could randomly assign points to clusters and use the size of the clusters as weight, but that isn't such a great method.
Generally, a nearest-neighbor approach is what is used. Now, it can be done in many ways:
Answered by Valentin Calomme on March 9, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP