Data Science Asked by Stamatis Tiniakos on March 3, 2021
I have trained a BERT model using ktrain (tensorflow wrapper) to recognize emotion on text, it works but it suffers from really slow inference. That makes my model not suitable for a production environment. I have done some research and it seems pruning could help.
Tensorflow provides some options for pruning e.g. tf.contrib.model_pruning .The problem is that it is not a widely used technique and I can not find a simple enough example that could help me to understand how to use it. Can someone help?
Only answers that include a coding solution will be considered for the bounty.
I provide my working code below for reference.
import pandas as pd
import numpy as np
import preprocessor as p
import emoji
import re
import ktrain
from ktrain import text
from unidecode import unidecode
import nltk
#text preprocessing class
class TextPreprocessing:
def __init__(self):
p.set_options(p.OPT.MENTION, p.OPT.URL)
def _punctuation(self,val):
val = re.sub(r'[^ws]',' ',val)
val = re.sub('_', ' ',val)
return val
def _whitespace(self,val):
return " ".join(val.split())
def _removenumbers(self,val):
val = re.sub('[0-9]+', '', val)
return val
def _remove_unicode(self, text):
text = unidecode(text).encode("ascii")
text = str(text, "ascii")
return text
def _split_to_sentences(self, body_text):
sentences = re.split(r"(?<!w.w.)(?<![A-Z][a-z].)(?<=.|?)s", body_text)
return sentences
def _clean_text(self,val):
val = val.lower()
val = self._removenumbers(val)
val = p.clean(val)
val = ' '.join(self._punctuation(emoji.demojize(val)).split())
val = self._remove_unicode(val)
val = self._whitespace(val)
return val
def text_preprocessor(self, body_text):
body_text_df = pd.DataFrame({"body_text": body_text},index=[1])
sentence_split_df = body_text_df.copy()
sentence_split_df["body_text"] = sentence_split_df["body_text"].apply(
self._split_to_sentences)
lst_col = "body_text"
sentence_split_df = pd.DataFrame(
{
col: np.repeat(
sentence_split_df[col].values, sentence_split_df[lst_col].str.len(
)
)
for col in sentence_split_df.columns.drop(lst_col)
}
).assign(**{lst_col: np.concatenate(sentence_split_df[lst_col].values)})[
sentence_split_df.columns
]
body_text_df["body_text"] = body_text_df["body_text"].apply(self._clean_text)
final_df = (
pd.concat([sentence_split_df, body_text_df])
.reset_index()
.drop(columns=["index"])
)
return final_df["body_text"]
#instantiate data preprocessing object
text1 = TextPreprocessing()
#import data
data_train = pd.read_csv('data_train_v5.csv', encoding='utf8', engine='python')
data_test = pd.read_csv('data_test_v5.csv', encoding='utf8', engine='python')
#clean the data
data_train['Text'] = data_train['Text'].apply(text1._clean_text)
data_test['Text'] = data_test['Text'].apply(text1._clean_text)
X_train = data_train.Text.tolist()
X_test = data_test.Text.tolist()
y_train = data_train.Emotion.tolist()
y_test = data_test.Emotion.tolist()
data = data_train.append(data_test, ignore_index=True)
class_names = ['joy','sadness','fear','anger','neutral']
encoding = {
'joy': 0,
'sadness': 1,
'fear': 2,
'anger': 3,
'neutral': 4
}
# Integer values for each class
y_train = [encoding[x] for x in y_train]
y_test = [encoding[x] for x in y_test]
trn, val, preproc = text.texts_from_array(x_train=X_train, y_train=y_train,
x_test=X_test, y_test=y_test,
class_names=class_names,
preprocess_mode='distilbert',
maxlen=350)
model = text.text_classifier('distilbert', train_data=trn, preproc=preproc)
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
predictor = ktrain.get_predictor(learner.model, preproc)
#save the model on a file for later use
predictor.save("models/bert_model")
message = "This is a happy message"
#cleaning - takes 5ms to run
clean = text1._clean_text(message)
#prediction - takes 325 ms to run
predictor.predict_proba(clean)
```
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP