Data Science Asked on May 30, 2021
I have a function I am trying to debug which is yielding the following error message:
ValueError: “concat” mode can only merge layers with matching output
shapes except for the concat axis. Layer shapes: [(None, 128, 80,
256), (None, 64, 80, 80)]
I’m running a kernel from a Kaggle competition called Dstl Satellite Imagery Feature Detection (kernel available here)
This is the function where I am having issues merging a list of tensors into a single tensor:
def get_unet():
inputs = Input((8, ISZ, ISZ))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2), dim_ordering="th")(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2), dim_ordering="th")(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2), dim_ordering="th")(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2), dim_ordering="th")(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv5)
up6 = merge([UpSampling2D(size=(2, 2), dim_ordering="th")(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv6)
up7 = merge([UpSampling2D(size=(2, 2), dim_ordering="th")(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2), dim_ordering="th")(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv8)
up9 = merge([UpSampling2D(size=(2, 2), dim_ordering="th")(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same', dim_ordering="th")(conv9)
conv10 = Convolution2D(N_Cls, 1, 1, activation='sigmoid', dim_ordering="th")(conv9)
model = Model(input=inputs, output=conv10)
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=[jaccard_coef, jaccard_coef_int, 'accuracy'])
return model
I’m running keras
with a TensorFlow
backend. My thoughts are that there are some compatibility issues with versions of software (i.e. the original code is over a year old). Or, perhaps I need to reshape the data somehow.
What might be causing this error?
This is the full error:
Traceback (most recent call last):
File "<ipython-input-1-e8f13915ac9b>", line 1, in <module>
runfile('/Users/aaron/temp/tmp/kaggle_dstl_v3.py', wdir='/Users/aaron/temp/tmp')
File "/Users/aaron/anaconda3/envs/kaggle-dstl-env/lib/python3.6/site-packages/spyder/utils/site/sitecustomize.py", line 705, in runfile
execfile(filename, namespace)
File "/Users/aaron/anaconda3/envs/kaggle-dstl-env/lib/python3.6/site-packages/spyder/utils/site/sitecustomize.py", line 102, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "/Users/aaron/temp/tmp/kaggle_dstl_v3.py", line 513, in <module>
model = train_net()
File "/Users/aaron/temp/tmp/kaggle_dstl_v3.py", line 416, in train_net
model = get_unet()
File "/Users/aaron/temp/tmp/kaggle_dstl_v3.py", line 294, in get_unet
up8 = merge([UpSampling2D(size=(2, 2), dim_ordering="th")(conv7), conv2], mode='concat', concat_axis=1)
File "/Users/aaron/anaconda3/envs/kaggle-dstl-env/lib/python3.6/site-packages/keras/legacy/layers.py", line 458, in merge
name=name)
File "/Users/aaron/anaconda3/envs/kaggle-dstl-env/lib/python3.6/site-packages/keras/legacy/layers.py", line 111, in __init__
node_indices, tensor_indices)
File "/Users/aaron/anaconda3/envs/kaggle-dstl-env/lib/python3.6/site-packages/keras/legacy/layers.py", line 191, in _arguments_validation
'Layer shapes: %s' % (input_shapes))
ValueError: "concat" mode can only merge layers with matching output shapes except for the concat axis. Layer shapes: [(None, 128, 80, 256), (None, 64, 80, 80)]
First of all, you are correct that your code is old as some functions being used are deprecated (e.g. Convolution2D is now Conv2D see here).
However, the error clearly states that you are trying to concatenate two tensors that their dimensions do not match. When concatenating two tensors along a specific axis, all other dimensions except the one being concatenated must be the same. In your case, you are trying to concatenate along axis=1, but the last dimension is different (256 for the first tensor and 80 for the second).
I would recommend basing your U-Net code on a newer implementation (link1, link2, link3).
These implementations replace your
merge([UpSampling2D(size=(2, 2), dim_ordering="th")(conv5), conv4], mode='concat', concat_axis=1)
layers with
up_conv5 = UpSampling2D(size=(2, 2), data_format="channels_last")(conv5)
ch, cw = get_crop_shape(conv4, up_conv5)
crop_conv4 = Cropping2D(cropping=(ch,cw), data_format="channels_last")(conv4)
up6 = concatenate([up_conv5, crop_conv4], axis=concat_axis)`
which also crops the height and the width of the previous layer to perform the concatenation correctly (the shape of the crop is determined through an auxiliary function).
Correct answer by Djib2011 on May 30, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP