Data Science Asked by Sazida Binta Islam on January 30, 2021
From a saved model, I am trying to predict a single image.
I followed this code – https://www.youtube.com/watch?v=A4K6D_gx2Iw
I am getting different result for two different command-
*model.predict_classes([prepare('tb2.JPG')])*
and
prediction = model.predict([prepare('tb2.JPG')])
*(CATEGORIES[int(prediction[0][0])])*
My saved model have 2 classes, I have used sigmoid activation function for dense layer, and loss function is ‘categorical_crossentropy’
The code is –
CATEGORIES = ["ba", "to"]
def prepare(filepath):
IMG_SIZE = 150 # 50 in txt-based
img_array = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
img_array = img_array / 255.0
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1)
model = tf.keras.models.load_model("test2.h5", compile=False)
prediction = model.predict([prepare('tb2.JPG')])
print(prediction)
print(CATEGORIES[int(prediction[0][0])])
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP