Data Science Asked by Lafayette on January 29, 2021
I am asking this question here after it went unanswered in Stack Overflow.
I’m trying to adapt the Keras example for VAE
I have modified the code to use noisy mnist images as the input of the autoencoder and the original, noiseless mnist images as the output.
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Layer
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
batch_size = 100
original_dim = 784
latent_dim = 2
intermediate_dim = 256
epochs = 1
epsilon_std = 1.0
x = Input(shape=(original_dim,))
h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
# Custom loss layer
class CustomVariationalLayer(Layer):
def __init__(self, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x, x_decoded_mean):
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean = inputs[1]
loss = self.vae_loss(x, x_decoded_mean)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output.
return x
y = CustomVariationalLayer()([x, x_decoded_mean])
vae = Model(x, y)
vae.compile(optimizer='rmsprop', loss=None)
# train the VAE on MNIST digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
noise_factor = 0.5
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
vae.fit(x_train_noisy, x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=( x_test_noisy,x_test))
But I am getting the following error message:
File "ask_vae.py", line 86, in <module>
validation_data=( x_test_noisy,x_test))
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1574, in fit
batch_size=batch_size)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1411, in _standardize_user_data
exception_prefix='target')
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 58, in _standardize_input_data
'expected no data, but got:', data)
ValueError: ('Error when checking model target: expected no data, but got:', array([[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
...,
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.],
[ 0., 0., 0., ..., 0., 0., 0.]], dtype=float32))
It seems that the model is not capable of receiving an output ; it works when I change the output to None, like so:
vae.fit(x_train_noisy, None,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=( x_test_noisy,None))
Is that because of the way the Custom Loss Layer is defined? How should I proceed?
Thanks 🙂
Since I asked this question here as well, I am pasting my answer to it here. I used a different way to define the VAE loss, as demonstrated in:
https://github.com/keras-team/keras/blob/keras-2/examples/variational_autoencoder.py
I changed it to allow for denoising of the data. It works now, but I'll have to play around with the hyperparameters to allow it to correctly reconstruct the original images.
import numpy as np
import time
import sys
import os
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
from keras.callbacks import ModelCheckpoint
filepath_for_w='denoise_by_VAE_weights_1.h5'
###########
##########
experiment_dir= 'exp_'+str(int(time.time()))
os.mkdir(experiment_dir)
this_script=sys.argv[0]
from shutil import copyfile
copyfile(this_script, experiment_dir+'/'+this_script)
##########
###########
batch_size = 100
original_dim = 784
latent_dim = 2
intermediate_dim = 256
epochs = 10
epsilon_std = 1.0
x = Input(batch_shape=(batch_size, original_dim))
h = Dense(intermediate_dim, activation='relu')(x)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0.,
stddev=epsilon_std)
return z_mean + K.exp(z_log_var / 2) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_h = Dense(intermediate_dim, activation='relu')
decoder_mean = Dense(original_dim, activation='sigmoid')
h_decoded = decoder_h(z)
x_decoded_mean = decoder_mean(h_decoded)
def vae_loss(x, x_decoded_mean):
xent_loss = original_dim * metrics.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return xent_loss + kl_loss
vae = Model(x, x_decoded_mean)
vae.compile(optimizer='rmsprop', loss=vae_loss)
# train the VAE on MNIST digits
(x_train, y_train), (x_test, y_test) = mnist.load_data()
#after loading the data, change to the new experiment dir
os.chdir(experiment_dir) #
##########################
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
noise_factor = 0.5
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
for i in range (10):
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
checkpointer=ModelCheckpoint(filepath_for_w, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1)
vae.fit(x_train_noisy, x_train,
shuffle=True,
epochs=epochs,
batch_size=batch_size,
validation_data=(x_test_noisy, x_test),
callbacks=[checkpointer])
vae.load_weights(filepath_for_w)
#print (x_train.shape)
#print (x_test.shape)
decoded_imgs = vae.predict(x_test,batch_size=batch_size)
np.save('decoded'+str(i)+'.npy',decoded_imgs)
np.save('tested.npy',x_test_noisy)
#np.save ('true_catagories.npy',y_test)
np.save('original.npy',x_test)
Answered by Lafayette on January 29, 2021
From your code it is seen that loss=None
i.e you don't give a loss function to the model.
vae.compile(optimizer='rmsprop', loss=None)
This is why it does not expect any target values.
Answered by Pranav sreedhar b on January 29, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP