Cross Validated Asked by Soham Bagchi on December 8, 2020
I’m trying to derive the estimators of the parameters using maximum likelihood method for Weibull distribution in random censoring scheme
$f(t)=alphalambda(lambda t)^{alpha -1}e^{{-lambda t}^{alpha}}$,$alpha >0$,$lambda>0$
Now i reparametrize $gamma=lambda^{alpha}$
then $f(t)=gammaalpha t^{alpha-1} e^{-gamma t^{alpha}}$
here $n_{u}$=number of uncensored observations
So the survival function $S(t)=e^{-gamma t^{alpha}}$
L=$(gamma alpha)^{n_{u}}$ $(prod_{u} t_{i} ^{alpha-1})$ exp{$-gamma sum_{u}t_{i} ^{alpha}$} exp{$-gamma sum_{c} c_{i} ^{alpha}$},
=$(gamma alpha)^{n_{u}}$($prod_{u} t_{i} ^{alpha -1} $)exp{$-gamma sum_{i=1}^n y_{i} ^{alpha} $}
Then
log L=$n_{u}log gamma$ + $n_{u} log alpha$ + $(alpha -1) sum_{u} log t_{i}$ + $gamma sum_{i=1}^n y_{i} ^{alpha}$
So,
$frac{partial}{partial gamma}log L=frac{n_{u}}{gamma}-sum_{i=1}^n y_{i} ^{alpha}$
$frac{partial}{partial alpha}log L=frac{n_{u}}{alpha}+sum_{u} log t_{i}- gammasum_{i=1}^n y_{i} ^{alpha} log y_{i}$
Now to write a program in R and to simulate the results,I need to obtain equations for $hat{alpha}$ and $hat{gamma}$ in the form to solve NR method.
Suggest me a way to proceed
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP