Computational Science Asked by Alex97 on July 31, 2021
I am trying to find a laplacian of the function explicitly using the RBF-FD approach The function is sin(pi*x)*cos(pi*z/2)
and its analytical solution of the Laplacian is -5/4*(pi^2)*sin(pi*x)*cos(pi*z/2)
The parameters are:
nx = 101
nz = nx
dx = 0.01
dz = dx
x = np.linspace(0, 1, nx)
z = np.linspace(0, 1, nz)
d2px = np.zeros((nz, nx))
d2pz = np.zeros((nz, nx))
X, Z = np.meshgrid(x, z)
points = np.column_stack([X.ravel(), Z.ravel()])
stencil = 5
size = len(points)
def func(x,z):
return np.sin(np.pi*x)*np.cos(np.pi*z/2)
f = func(points[:, 0], points[:, 1]).reshape(nx, nz)
def laplace_abs(x, z):
return -5/4*(np.pi**2)*np.sin(np.pi*x)*np.cos(np.pi*z/2)
laplace_abs = laplace_abs(points[:, 0], points[:, 1]).reshape(nx, nz)
Then, I am trying to find RBF-FD coefficients for the 5-points-stencil like in FDM. After finding coefficients the Laplacian value should be represented as a weighted sum. The relevant formulas are represented here:
enter image description here
The main part of code is:
def get_fd_indices():
nbrs = NearestNeighbors(n_neighbors=stencil, algorithm='ball_tree', metric='euclidean').fit(points)
return nbrs.kneighbors(points)
distances, indices = get_fd_indices()
r = distances
RHS = np.where(distances != 0, r**2*(16*np.log(r)+8), 0)
def LHS(x, xi):
R = np.zeros((size,stencil,stencil))
for i in range(size):
R[i] = distance.cdist(x[i], x[i], 'euclidean')
LHS = np.where(R != 0, R**4*np.log(R), 0)
return LHS
LHS = LHS(points[indices], points[indices])
def get_coef(LHS, RHS):
c = np.zeros((size, stencil, 1))
for i in range(size):
Left = LHS[i]
Right = RHS[i].reshape((stencil,1))
c[i] = LA.pinv(Left).dot(Right)
return c
c = get_coef(LHS, RHS)
values = f.ravel()
laplaceRBF = np.zeros(size)
for i in range(size):
index = indices[i]
laplaceRBF[i] = np.sum(values[index]*c[i])
laplaceRBF = laplaceRBF.reshape(nx, nz)
I expect to obtain results similar to the FDM solution
def FDM(f, dx):
for i in range(1, nx - 1):
d2px[i, :] = (f[i - 1, :] - 2 * f[i, :] + f[i + 1, :]) / dx ** 2
for j in range(1, nz - 1):
d2pz[:, j] = (f[:, j - 1] - 2 * f[:, j] + f[:, j + 1]) / dz ** 2
return d2px+d2pz
FDM = FDM(f, dx)
Right now the results of the RBF-FD are totally different from an FDM. Some error in RBF-FD realization. Please, tell me, what’s wrong.
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP