TransWikia.com

A Level Statistics Calculator/Helper For A Casio Fx-CG50 Calculator's MicroPython

Code Review Asked by user227128 on November 25, 2021

I have made a program for my calculator’s micropython, that can solve various a level statistics questions for me. However due to the limitations of the micropython's standard library, i had to reinvent the wheel on some functions and could not rely on external modules to do the tasks as they don’t exist in micropython. I tried to implement everything using mostly pure python. As such, I would like some advice on shortcuts to make my code, more efficient and compact, and if there is an easier way to do a task, it’d be appreciated.

def find_median(lst): # finds the median of a sorted_list
    quotient, remainder = divmod(len(lst), 2)
    if remainder:
        return lst[quotient]
    return sum(lst[quotient - 1:quotient + 1]) / 2


def find_mode(listed_data): # finds the mode for listed data
    Counter = {value: listed_data.count(value) for value in listed_data}
    m = max(Counter.values())
    mode = [x for x in set(listed_data) if Counter[x] == m] if m>1 else None
    return mode


def interpolation_grouped_data(grouped_data, cumulative_frequencies, position): # responsible for using linear interpolation to find the lower quartile, median, and upper quartile of grouped data
    if cumulative_frequencies[0] > position: # if the position of the data required is not in the first interval, then it is between 0 , and the lowest bound in the first interval
        mn_cu_freq = 0
        mx_cu_freq = cumulative_frequencies[0]
        mid_cu_freq = position
        interval_index = 0
    else:
        for index in range(len(cumulative_frequencies) - 1): 
            if cumulative_frequencies[index+1] > position >= cumulative_frequencies[index]: # if the position is within this interval
                mn_cu_freq = cumulative_frequencies[index]
                mx_cu_freq = cumulative_frequencies[index + 1]
                mid_cu_freq = position
                interval_index = index + 1
                break
    lower_bound, upper_bound = grouped_data[interval_index][0:2]
    return interpolation(mn_cu_freq, mid_cu_freq, mx_cu_freq, lower_bound, upper_bound)


def interpolation(mn_cu_freq, mid_cu_freq, mx_cu_freq, lower_bound, upper_bound): # uses interpolation to find the result, cu represents cumulative
    result = lower_bound + ( ( (mid_cu_freq - mn_cu_freq)/(mx_cu_freq - mn_cu_freq) ) * (upper_bound - lower_bound) )
    return result


def listed_data_stats(listed_data): # for dealing with listed data Ex: 1,2,3,4 or 5,1,4,2,6,7
    # sum of data, number of data, mean
    sum_x = sum(listed_data)
    number_of_data = len(listed_data)
    mean = sum_x / number_of_data

    # sum of each data squared
    sum_x_squared = sum(i**2 for i in listed_data)

    # variance, and standard deviation
    variance = (sum_x_squared / number_of_data) - mean**2
    standard_deviation = round((variance)**0.5, 5)

    # data sorted for finding measure of locations
    sorted_listed_data = sorted(listed_data)
    middle = number_of_data//2

    # minimum, and maximum value
    minimum = sorted_listed_data[0]
    maximum = sorted_listed_data[-1]

    # lower quartile, median, upper quartile
    LQ_list, Median_list = sorted_listed_data[:middle], sorted_listed_data
    UQ_list =  sorted_listed_data[middle:] if number_of_data % 2 == 0 else sorted_listed_data[middle+1:]
    lower_quartile = find_median(LQ_list)
    median = find_median(Median_list)
    upper_quartile = find_median(UQ_list)

    # Interquartile Range
    interquartile_range = upper_quartile - lower_quartile
    Range = sorted_listed_data[-1] - sorted_listed_data[0]

    # Outliers
    lower_outlier_bound = lower_quartile - (1.5*standard_deviation)
    upper_outlier_bound = upper_quartile + (1.5*standard_deviation)

    # Skewness
    skewness_quantity = (3*(mean-median))/standard_deviation
    if skewness_quantity > 0:
        skewness = "positive"
    elif skewness_quantity < 0:
        skewness = "negative"
    else:
        skewness = "symmetrical"

    # mode
    mode = find_mode(sorted_listed_data)
    
    return [round(x, 5) if isinstance(x, float) else x for x in (sorted_listed_data, minimum, 
            maximum, sum_x, sum_x_squared, number_of_data, mean, mode, lower_quartile, median, 
            upper_quartile, interquartile_range, Range, variance, standard_deviation, 
            lower_outlier_bound, upper_outlier_bound, skewness, skewness_quantity)]


def continuous_grouped_data_stats(grouped_data): # for dealing with grouped data ex: [[lower bound, upper bound, frequency], [...], [...]] etc. in [[0, 10, 16], [10, 15, 18], [15, 20, 50]] in the first list, 0 and 10 represents the interval 0 -> 10, and 16 is the frequency of numbers in this range
    midpoints = []
    cumulative_frequencies = []
    sum_x = 0
    sum_x_squared = 0
    number_of_data = 0
    if grouped_data[1][0] != grouped_data[0][1]: # if there are gaps in data
        gap = (grouped_data[1][0] - grouped_data[0][1])/2
        for data in grouped_data:
            if data[0] != 0:
                data[0] -= gap
            data[1] += gap

    count = 0
    for data in grouped_data:
        start_bound = data[0]
        end_bound = data[1]
        frequency = data[2]
        midpoints.append((start_bound + end_bound)/2) # acquires a list of midpoints for the each interval/tuple
        current_midpoint = midpoints[count]
        number_of_data += frequency # acquires the number of data/ total frequency of all intervals
        sum_x += (current_midpoint * frequency) # gets the sum of all midpoints x frequency
        sum_x_squared += (current_midpoint**2 * frequency) # gets the sum of all midpoints^2 x frequency
        if count == 0: # if it is the first loop, then add the first value of cumulative frequency to the list
            cumulative_frequencies.append(frequency) 
        else: # if it is not, then get the value of the previous cumulative frequency and add to it the frequency of the current data, and append it
            cumulative_frequencies.append(cumulative_frequencies[count-1] + frequency)
        count += 1

    # mean
    mean = sum_x / number_of_data 

    # variance, and standard deviation
    variance = (sum_x_squared / number_of_data) - mean**2
    standard_deviation = (variance)**0.5

    # lower quartile, median, and upper quartile, interquartile range, Range, and outlier
    lower_quartile = interpolation_grouped_data(grouped_data, cumulative_frequencies, 0.25 * number_of_data) # performs interpolation to acquire it
    median = interpolation_grouped_data(grouped_data, cumulative_frequencies, 0.5 * number_of_data)
    upper_quartile = interpolation_grouped_data(grouped_data, cumulative_frequencies, 0.75 * number_of_data)
    interquartile_range = upper_quartile - lower_quartile
    Range = grouped_data[-1][1] - grouped_data[0][0]
    lower_outlier_bound = lower_quartile - (1.5*standard_deviation)
    upper_outlier_bound = upper_quartile + (1.5*standard_deviation)
    
    # Skewness
    skewness_quantity = (3*(mean-median))/standard_deviation
    if skewness_quantity > 0:
        skewness = "positive"
    elif skewness_quantity < 0:
        skewness = "negative"
    else:
        skewness = "symmetrical"
    
    return [round(x, 5) if isinstance(x, float) else x for x in (sum_x, sum_x_squared, number_of_data, midpoints, cumulative_frequencies, 
            mean, lower_quartile, median, upper_quartile, interquartile_range, 
            Range, variance, standard_deviation, lower_outlier_bound, 
            upper_outlier_bound, skewness, skewness_quantity)]


def discrete_grouped_data_stats(grouped_data):
    cumulative_frequencies = []
    sum_data = 0 
    sum_data_squared = 0

    sum_x = 0
    sum_x_squared = 0
    sum_y_squared = 0
    number_of_data = 0

    count = 0
    for data in grouped_data:
        value, frequency = data
        number_of_data += frequency
        sum_data += (value * frequency)
        sum_data_squared += (value**2 * frequency)
        sum_x += value
        sum_x_squared += value**2
        sum_y_squared += frequency**2

        if count != 0: # if it is not the first loop, then get the value of the previous cumulative frequency and add to it the frequency of the current data, and append it
            cumulative_frequencies.append(cumulative_frequencies[count-1] + frequency) 
        else: # if it is the first loop, then add the first value of cumulative frequency to the list
            cumulative_frequencies.append(frequency) 
        count += 1

    # mean
    mean = sum_data / number_of_data

    # variance, and standard deviation
    variance = (sum_data_squared / number_of_data) - mean**2
    standard_deviation = variance**0.5

    # data sorted for finding measure of locations
    sorted_listed_data = []
    if all((isinstance(freq[1], int) for freq in grouped_data)):
        for value, frequency in grouped_data:
            sorted_listed_data.extend([float(value)] * frequency)
        sorted_listed_data.sort()
    else:
        sorted_listed_data = None

    if sorted_listed_data: # standard discrete data

        # lower quartile, median, upper quartile
        middle = number_of_data//2
        LQ_list = sorted_listed_data[:middle]
        UQ_list =  sorted_listed_data[middle:] if number_of_data % 2 == 0 else sorted_listed_data[middle+1:]
        lower_quartile = find_median(LQ_list)
        median = find_median(sorted_listed_data)
        upper_quartile = find_median(UQ_list)

        # Interquartile Range
        interquartile_range = upper_quartile - lower_quartile
        Range = sorted_listed_data[-1] - sorted_listed_data[0]

        # Outliers
        lower_outlier_bound = lower_quartile - (1.5*standard_deviation)
        upper_outlier_bound = upper_quartile + (1.5*standard_deviation)

        # Skewness
        skewness_quantity = (3*(mean-median))/standard_deviation
        if skewness_quantity > 0:
            skewness = "positive"
        elif skewness_quantity < 0:
            skewness = "negative"
        else:
            skewness = "symmetrical"

    else:  # Path towards regression line related data
        cumulative_frequencies = None

    # Sxx, Syy, Sxy, Regression Line equation (y = a + bx)
    sum_y = number_of_data
    sum_xy = sum_data
    Sxx = sum_x_squared - ( (sum_x**2)/ count )
    Syy = sum_y_squared - ( (sum_y**2)/ count )
    Sxy = sum_xy - ((sum_x * sum_y)/ count  )
    mean_x = sum_x/count
    mean_y = sum_y/count
    b = Sxy/Sxx
    a = mean_y - b*(mean_x)
    regression_line_equation = ['y = {} + {}x'.format(round(a, 5), round(b, 5))]
    if not cumulative_frequencies: # if it is regression related, then no Nones
        lower_quartile = upper_quartile = interquartile_range = lower_outlier_bound = upper_outlier_bound = None
        sum_data = sum_data_squared = number_of_data = mean = skewness = skewness_quantity = median = Range = None

    # Product Moment Coefficient
    product_momentum_correlation_coefficient = Sxy/(Sxx * Syy)**0.5

    return [round(x, 5) if isinstance(x, float) else x for x in (sum_data, sum_data_squared, number_of_data, cumulative_frequencies, 
            mean, lower_quartile, median, upper_quartile, 
            interquartile_range, Range, variance, standard_deviation, 
            lower_outlier_bound, upper_outlier_bound, skewness, 
            skewness_quantity, count, sum_x, sum_x_squared, sum_y, sum_y_squared, sum_xy, mean_x, 
            mean_y, Sxx, Syy, Sxy, b, a, regression_line_equation,
            product_momentum_correlation_coefficient)]


def check_type(x):
    if isinstance(x, float): # if type is list, do not convert to int
        return str(int(x)) if x % 1 == 0 else str(x)
    elif isinstance(x, list):
        if isinstance(x[0], float):
            return str([int(x[i]) if x[i] % 1 == 0 else x[i] for i in range(len(x))])
    return str(x)


def print_stats(results_names, results):
    print("", *(results_names[i] + " = " + check_type(results[i]) for i in range(len(results_names))), sep='n')


def linear_interpolation(): # a
    variables = [None] * 5 # values to be inputted for interpolation
    variables_names = ["mn_cu_freq", "mid_cu_freq", "mx_cu_freq", "lower_bound", "upper_bound"]
    for index in range(5): 
        variables[index] = float(input("{}: ".format(variables_names[index])))
    print("x = ", interpolation(*variables))


def listed_data_statistics(): # b
    listed_data = [] 
    value = input("Enter Values: ")
    while value != 'x':
        value = float(value)
        listed_data.append(value)
        value = input("Enter Values: ")
    results = listed_data_stats(listed_data) # for concatonation
    results_names = ('Sorted_Data', 'Minimum', 'Maximum', 'Sum_x', 'Sum_x^2', 'n', 'Mean', 'Mode', 'Lower Quartile', 
                     'Median', 'Upper Quartile', 'IQR', 'Range', 'Variance', 'Standard Deviation',
                     'Lower Outlier', 'Upper Outlier', 'Skewness', 'Skewness Value')
    print_stats(results_names, results)


def continuous_grouped_data_statistics(): # c
    grouped_data = []
    while True:
        start_boundary = input("Start Bound: ")
        if start_boundary == "x": # enter x when no more data available
            break
        end_boundary = input("End Bound: ")
        frequency = input("Frequency: ")
        grouped_data.append([float(start_boundary), float(end_boundary), int(frequency)]) # each row in the grouped data is a list
    results = continuous_grouped_data_stats(grouped_data)
    results_names = ('Sum_x', 'Sum_x^2', 'n', 'Midpoints', 'Cum. Freq', 'Mean', 'Lower Quartile', 
                     'Median', 'Upper Quartile', 'IQR', 'Range', 'Variance', 'Standard Deviation',
                     'Lower Outlier', 'Upper Outlier', 'Skewness', 'Skewness Value')
    print_stats(results_names, results)


def discrete_grouped_data_statistics(): # d
    grouped_data = []
    while True:
        value = input("Value: ")
        if value == "x":
            break
        frequency = input("Frequency: ")
        grouped_data.append([float(value), (int(frequency) if float(frequency) % 1 == 0 else float(frequency))])
    results = discrete_grouped_data_stats(grouped_data)
    results_names = ('Sum', 'Sum^2', 'n', 'Cum. Freq', 'Mean', 'Lower Quartile', 
                     'Median', 'Upper Quartile', 'IQR', 'Range', 'Variance', 'Standard Deviation',
                     'Lower Outlier', 'Upper Outlier', 'Skewness', 'Skewness Value', 'Sample_n', 'Sum_x', 'Sum_x^2', 'Sum_y',
                     'Sum_y^2', 'Sum_xy', 'Mean_x', 'Mean_y', 'Sxx', 'Syy', 'Sxy', 'b', 'a', 'Reg. Eq', 'Prod. Momen. Coeff')
    print_stats(results_names, results)


def coded_data_discrete_output(grouped_data, prompt_index):
    prompts = ["-- With Coding --", '-- Without Coding --']
    print(prompts[prompt_index])
    results = discrete_grouped_data_stats(grouped_data)
    results_names = ('Sum', 'Sum^2', 'n', 'Cum. Freq', 'Mean', 'Lower Quartile', 
                     'Median', 'Upper Quartile', 'IQR', 'Range', 'Variance', 'Standard Deviation',
                     'Lower Outlier', 'Upper Outlier', 'Skewness', 'Skewness Value', 'Sample_n', 'Sum_x', 'Sum_x^2', 'Sum_y',
                     'Sum_y^2', 'Sum_xy', 'Mean_x', 'Mean_y', 'Sxx', 'Syy', 'Sxy', 'b', 'a', 'Reg. Eq', 'Prod. Momen. Coeff')
    print_stats(results_names, results)


def histogram_calculator(): # e
    names = ["Freq. 1 : ", "ClassWidth 1 : ", "Freq. 2 : ", "ClassWidth 2 : ", "Height 1 : ", "Width 1 : "]
    Frequency_1, Class_Width_1, Frequency_2, Class_Width_2, Height_1, Width_1 = [float(input(prompt)) for prompt in names]

    Freq_Dens_1 = Frequency_1/Class_Width_1
    Freq_Dens_2 = Frequency_2/Class_Width_2
    Width_2 = (Class_Width_2*Width_1)/Class_Width_1
    Height_2 = (Freq_Dens_2*Height_1)/Freq_Dens_1
    print("", "Other Width = " + str(Width_2), "Other Height = " + str(Height_2), sep="n")


def code_data(): # f 
    # codes x and y data
    x_lst = []
    y_lst = []
    count = 2
    x = input("X1: ")
    y = input("Y1: ")
    while x != 'x' and y != 'x':
        x_lst.append(x)
        y_lst.append(y)
        x = input("X{}: ".format(count))
        y = input("Y{}: ".format(count))
        count += 1

    x_lst = list(map(float, x_lst))
    y_lst = list(map(float, y_lst))
    original_data = list(zip(x_lst, y_lst))

    choices = {'+': lambda n1, n2: n1+n2,
            '-': lambda n1, n2: n1-n2,
            '*': lambda n1, n2: n1*n2,
            '/': lambda n1, n2: n1/n2}


    prompts = ["Enter Operation: ", "Enter Value: "]

    x_operations = []
    y_operations = []
    count = 0
    print("nCoding X values - - - -")
    # coding x
    coding = input(prompts[0])
    while coding != 'x':
        count += 1
        x_operations.append(coding)
        coding = input(prompts[count%2])

    count = 0
    print("nCoding Y values - - - -")
    # coding y
    coding = input(prompts[0])
    while coding != 'x':
        count += 1
        y_operations.append(coding)
        coding = input(prompts[count%2])

    # coding elements in x and y lsts
    for i in range(0, len(x_operations), 2):
        number = float(x_operations[i+1])
        for j in range(0, len(x_lst)):
            x_lst[j] = choices[x_operations[i]](x_lst[j], number)
            x_lst[j] = int(x_lst[j]) if x_lst[j] % 1 == 0 else float(x_lst[j])

    for i in range(0, len(y_operations), 2):
        number = float(y_operations[i+1])
        for j in range(0, len(y_lst)):
            y_lst[j] = choices[y_operations[i]](y_lst[j], number)
            y_lst[j] = int(y_lst[j]) if y_lst[j] % 1 == 0 else float(y_lst[j])

    coded_data = list(zip(x_lst, y_lst))
    print("Coded X: {}".format(x_lst))
    print("Coded Y: {}n".format(y_lst))

    d = {'x': coded_data_discrete_output}
    c = input("Stats?: x=yes: ")
    choice = d.get(c, lambda a, b: None)(coded_data, 0)
    if c == 'x':
        print("n")
        coded_data_discrete_output(original_data, 1)


def normal_distribution():
    """
    Acquires a, given x [and y], for a standard Normal Distribution of mean 0, and standard deviation 1
    1) P(Z < x) = a
    2) P(Z > x) = a
    3) P(x < Z < y) = a
    4) P(Z < a) = x
    5) P(Z > a) = x
    6) P(-a < x < a) = x
    """
    from math import sqrt, exp
    mean = 0
    standard_dev = 1
    percentage_points = {0.5000: 0.0000, 0.4000: 0.2533, 0.3000: 0.5244, 0.2000: 0.8416, 0.1000: 1.2816, 0.0500: 1.6440, 0.0250: 1.9600, 0.0100: 2.3263, 0.0050: 2.5758, 0.0010: 3.0902, 0.0005: 3.2905}

    def erf(x):
        """
        python implementation of math.erf() as it is not available in micropython
        """
        # save the sign of x
        sign = 1 if x >= 0 else -1
        x = abs(x)

        # constants
        a1 =  0.254829592
        a2 = -0.284496736
        a3 =  1.421413741
        a4 = -1.453152027
        a5 =  1.061405429
        p  =  0.3275911

        # A&S formula 7.1.26
        t = 1.0/(1.0 + p*x)
        y = 1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)
        return sign*y # erf(-x) = -erf(x)

    def get_z_less_than(x=None, digits=4):
        """
        P(Z < x) = a
        """
        if x is None:
            x = float(input("Enter x: "))

        res = 0.5 * (1 + erf((x - mean) / sqrt(2 * standard_dev ** 2)))
        return round(res, digits)

    def get_z_greater_than(x=None):
        """
        P(Z > x) = a
        """
        if x is None:
            x = float(input("Enter x: "))

        return round(1 - get_z_less_than(x), 4)

    def get_z_in_range(lower_bound=None, upper_bound=None):
        """
        P(lower_bound < Z < upper_bound) = 
        """
        if lower_bound is None and upper_bound is None:
            lower_bound = float(input("Enter lower_bound: "))
            upper_bound = float(input("Enter upper_bound: "))

        return round(get_z_less_than(upper_bound) - get_z_less_than(lower_bound), 4)

    def get_z_less_than_a_equal(x=None, digits=4, round_=2):
        """
        P(Z < a) = x
        """
        if x is None:
            x = float(input("Enter x: "))

        if x <= 0.0 or x >= 1.0:
            raise ValueError("x must be >0.0 and <1.0")
        min_res, max_res = -10, 10
        while max_res - min_res > 10 ** -(digits * 2):
            mid = (max_res + min_res) / 2
            if get_z_less_than(mid, digits*2) < x:
                min_res = mid
            else:
                max_res = mid
        return round((max_res + min_res) / 2, round_)

    def get_z_greater_than_a_equal(x=None):
        """
        P(Z > a) = x
        """
        if x is None:
            x = float(input("Enter x: "))

        if x in percentage_points:
            return percentage_points[x]
        else:
            return get_z_less_than_a_equal(1-x)

    def get_z_in_range_a_b_equal(x=None):
        """
        P(-a < Z < a) = x
        acquires a
        """
        if x is None:
            x = float(input("Enter x: "))
                    
        return get_z_less_than_a_equal(0.5 + x/2, 4, 4)

    norm_choices = {'1': get_z_less_than, 
                    '2': get_z_greater_than, 
                    '3': get_z_in_range, 
                    '4': get_z_less_than_a_equal, 
                    '5': get_z_greater_than_a_equal, 
                    '6': get_z_in_range_a_b_equal}

    option = input("1: P(Z < x) = an2: P(Z > x) = an3: P(-x < Z < x) = an4: P(Z < a) = xn5: P(Z > a) = xn6: P(-a < Z < a) = xn: ")

    # if not a valid option, then do nothing and naturally exit    
    print(norm_choices.get(option, lambda: None)())
    again = input("Try again? 1 = Yesn: ")
    if again == '1':
        normal_distribution()


def statistics(): # checks for what you want
    choices = {'1': linear_interpolation, 
               '2': listed_data_statistics, 
               '3': continuous_grouped_data_statistics, 
               '4': discrete_grouped_data_statistics,
               '5': histogram_calculator,
               '6': code_data,
               '7': normal_distribution}
    choice = input("1: Interpolationn2: Listed Datan3: Continuous Datan4: Discrete Datan5: Histogramn6: Code Datan7: Norm_Dist : ")
    choices.get(choice, lambda: None)()


statistics()

One Answer

As a disclaimer, I'm not familiar with either micropython, nor the calculator hardware that it will run on. I can only give advice on the Python code itself in isolation.


def find_median(lst): # finds the median of a sorted_list
    quotient, remainder = divmod(len(lst), 2)
    if remainder:
        return lst[quotient]
    return sum(lst[quotient - 1:quotient + 1]) / 2

There is a pretty big oversight in this code. It does not check if the sequence is sorted, nor does it sort it. You'll need to do one of the two.

Quotient and remainder, while accurate, are not particularly communicative names. Why do you why the quotient and remainder? You could try something like half_len and has_odd_len.

Since you know there will be exactly two values to sum up, I'd say stick with the simple lst[quotient - 1] + lst[quotient]

If I were to be picky

  • find_median could be simply median
  • # finds the median of a sorted_list seems like it is a docstring without the conventional triple quotes.
  • lst is not a great name. The statistics module tends to go with data, which I think is a better choice.

def median(data): """Get the median of a sorted list""" if not is_sorted(data): raise ValueError("The data must be sorted")

half_len, has_odd_len = divmod(len(data), 2)
if has_odd_len:
    return data[half_len]
return (data[half_len - 1] + data[half_len]) / 2

def find_mode(listed_data): # finds the mode for listed data
    Counter = {value: listed_data.count(value) for value in listed_data}
    m = max(Counter.values())
    mode = [x for x in set(listed_data) if Counter[x] == m] if m>1 else None
    return mode

You have an implicit O(n2) time complexity in this function (with n being the length of the list). listed_data.count(value) takes up to O(n) time as it needs to check every element. This counting is done O(n) times. You can fix this by implementing your own mini collections.Counter with a dict.

Making a set out of listed_data is unnecessary, the keys in the Counter dict are already the set you want. I would change the list comprehension to use the dict as it has all the information you need.

If were are re-implementing Python's statistics, this seems more like multimode than mode, since it may return multiple elements.

In a list with just one element, this unexpectedly returns None. I think you need a few tests to see if everything is actually working as expected. I've left the behaviour alone in the sample code below.

Again being picky, don't have any variables start with uppercase. That is usually an indicator that this is the name of a class.

def mode(data):
    """Find the mode(s) of the data.
    A mode is any value which occurs the most number of times.
    """
    counter = dict()
    for value in data:
        if value not in counter:
            counter[value] = 0
        counter[value] += 1

    m = max(counter.values())
    if m <= 1:
        return None

    return [x for x, occurance in counter.items() if occurance == m]

def listed_data_stats(listed_data): # for dealing with listed data Ex: 1,2,3,4 or 5,1,4,2,6,7
    # sum of data, number of data, mean
    sum_x = sum(listed_data)
    number_of_data = len(listed_data)
    mean = sum_x / number_of_data

    # sum of each data squared
    sum_x_squared = sum(i**2 for i in listed_data)

    # variance, and standard deviation
    variance = (sum_x_squared / number_of_data) - mean**2
    standard_deviation = round((variance)**0.5, 5)

    # data sorted for finding measure of locations
    sorted_listed_data = sorted(listed_data)
    middle = number_of_data//2

    # minimum, and maximum value
    minimum = sorted_listed_data[0]
    maximum = sorted_listed_data[-1]

You can make a small improvement to the functionality of this code by computing the sorted list of data first. This will allow you to compute the stats for one time iterators (you can only iterate over them once, a.k.a. one call to len, sum, etc).

Comments like # sum of data, number of data, mean don't really add much to the code. I can see you've computed the sum of the data, the size of it, and it's mean, but I still don't know why you want these. If the comment is purely descriptive of the code, it probably isn't worth keeping.

return [round(x, 5) if isinstance(x, float) else x for x in (sorted_listed_data, minimum, 
        maximum, sum_x, sum_x_squared, number_of_data, mean, mode, lower_quartile, median, 
        upper_quartile, interquartile_range, Range, variance, standard_deviation, 
        lower_outlier_bound, upper_outlier_bound, skewness, skewness_quantity)]

This is a lot of data to return as a tuple. Without a good comment in the docstring, it will be rather cumbersome for the user of this function to figure out which position in the list corresponds to which statistic. This is problematic as this is the only place in the whole function that will give them this information, and it is not easy to use. Consider making a class with attributes, a dictionary with easy to use key value pairs (e.g. {"skewness": skewness}), or splitting this up into multiple functions and letting the user decide which statistics they want.


Some other things to consider are

  • Which the functions will react poorly to being fed an empty list of data? Or a very long list of data? It is worth writing down these tests and running them after each code change.
  • Try running the code through pylint, flake8, pep8, or another linter. It will point out a fair number of small problems with styling, especially with weird spacing. Don't take the results too seriously, they are useful to get code into shape for when other people will look at the code.
  • There are a few places with hardcoded precision values that might be nicer as positional parameters, or a global constant, so that they can be changed later.

Answered by spyr03 on November 25, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP