TeX - LaTeX Asked by Ramanujan on April 19, 2021
On slide 24 of this talk one finds this image
which is supposed to depict the atomic set e^{i phi} [ 1, e^{2 pi i f}, e^{4 pi i f}, … e^{2 (n – 1) pi i f}]^T for phi in [0, 2 pi) and f in [0, 1).
I am suspecting that only the real parts of the first three components of the vector is plotted for different phi values but that is not quite it.
I would be grateful if someone could identify what exactly is plotted and how to achieve the colouring on the surface.
MWE
documentclass[tikz]{standalone}
usepackage{pgfplots}
begin{document}
begin{tikzpicture}
begin{axis}[grid = major, view={-30}{30}]
addplot3[variable=t,samples = 60,domain=0:1]
({cos(2 * pi * deg(t))},{cos(4 * pi * deg(t))}, {cos(6 * pi * deg(t))});
end{axis}
end{tikzpicture}
end{document}
As @Symbol 1 said, It seems that the plot corresponds to the real part of three successive elements + the convex hull.
I've tried it in Matlab and the closest graph corresponds to [cos(2*pi*f+phi),cos(4*pi*f+phi),cos(6*pi*f+phi)]
and phi=pi/2
and f in [0,1]
Here is the result:
This is generated by the following Matlab code:
f=0:0.01:1;
phi=pi/2;
xx=cos(2*pi*f+phi);
yy=cos(4*pi*f+phi);
zz=cos(6*pi*f+phi);
[k1] = convhull(xx,yy,zz);
trimesh(k1,xx,yy,zz)
hold on
plot3(cos(2*pi*f+phi),cos(4*pi*f+phi),cos(6*pi*f+phi),'r','linewidth',2)
with Jet colormap option.
You can use matlab2tikz to get the LaTeX code and you can plot it using pgfplots package. Here is my attempt:
I've modified the Latex code:
Here is the LaTeX main file:
documentclass[border=0.2cm]{standalone}
usepackage{pgfplots}
pgfplotsset{compat=1.11}
begin{document}
input{atomicSet}
end{document}
and the illustration file, named atomicSet.tex
:
begin{tikzpicture}
begin{axis}[%
width=3.743in,
height=2.983in,
scale only axis,
colormap/jet,
xmin=-1,
xmax=1,
ymin=-1,
ymax=1,
zmin=-1,
zmax=1,
view={-37.5}{30},
grid,
]
addplot3[area legend,opacity=0.95, table/row sep=crcr, patch, shader=flat corner, fill=white, patch table with point meta={%
8 9 42 -0.998026728428272
8 42 75 -0.998026728428272
8 74 9 -0.998026728428272
8 75 74 -0.998026728428272
9 10 41 -0.992114701314478
9 41 42 -0.992114701314478
9 70 10 -0.992114701314478
9 71 70 -0.992114701314478
9 72 71 -0.992114701314478
9 73 72 -0.992114701314478
9 74 73 -0.992114701314478
10 11 40 -0.951056516295154
10 40 41 -0.951056516295154
10 66 11 -0.951056516295154
10 67 66 -0.951056516295154
10 68 67 -0.951056516295154
10 69 68 -0.951056516295154
10 70 69 -0.951056516295154
11 12 38 -0.876306680043864
11 38 39 -0.876306680043864
11 39 40 -0.876306680043864
11 64 12 -0.876306680043864
11 65 64 -0.876306680043864
11 66 65 -0.876306680043864
12 13 38 -0.770513242775789
12 63 13 -0.770513242775789
12 64 63 -0.770513242775789
13 14 37 -0.63742398974869
13 37 38 -0.63742398974869
13 62 14 -0.63742398974869
13 63 62 -0.63742398974869
14 15 35 -0.481753674101715
14 35 36 -0.481753674101715
14 36 37 -0.481753674101715
14 61 15 -0.481753674101715
14 62 61 -0.481753674101715
15 16 35 -0.309016994374948
15 61 16 -0.309016994374948
16 17 34 -0.125333233564304
16 34 35 -0.125333233564304
16 60 17 -0.125333233564304
16 61 60 -0.125333233564304
17 18 32 0.0627905195293128
17 32 33 0.0627905195293128
17 33 34 0.0627905195293128
17 60 18 0.0627905195293128
18 19 32 0.248689887164855
18 60 19 0.248689887164855
19 20 30 0.425779291565073
19 30 31 0.425779291565073
19 31 32 0.425779291565073
19 60 20 0.425779291565073
20 21 29 0.587785252292473
20 29 30 0.587785252292473
20 59 21 0.587785252292473
20 60 59 0.587785252292473
21 22 29 0.728968627421411
21 59 22 0.728968627421411
22 23 27 0.844327925502015
22 27 28 0.844327925502015
22 28 29 0.844327925502015
22 59 23 0.844327925502015
23 24 27 0.929776485888251
23 59 24 0.929776485888251
24 25 26 0.982287250728689
24 26 27 0.982287250728689
24 58 25 0.982287250728689
24 59 58 0.982287250728689
25 58 92 1
25 92 26 1
26 91 27 0.982287250728689
26 92 91 0.982287250728689
27 91 28 0.929776485888251
28 91 29 0.844327925502015
29 91 30 0.728968627421412
30 90 31 0.587785252292473
30 91 90 0.587785252292473
31 90 32 0.425779291565073
32 90 33 0.248689887164855
33 90 34 0.0627905195293133
34 89 35 -0.125333233564304
34 90 89 -0.125333233564304
35 89 36 -0.309016994374947
36 88 37 -0.481753674101714
36 89 88 -0.481753674101714
37 88 38 -0.637423989748689
38 86 39 -0.770513242775789
38 87 86 -0.770513242775789
38 88 87 -0.770513242775789
39 84 40 -0.876306680043863
39 85 84 -0.876306680043863
39 86 85 -0.876306680043863
40 80 41 -0.951056516295153
40 81 80 -0.951056516295153
40 82 81 -0.951056516295153
40 83 82 -0.951056516295153
40 84 83 -0.951056516295153
41 76 42 -0.992114701314478
41 77 76 -0.992114701314478
41 78 77 -0.992114701314478
41 79 78 -0.992114701314478
41 80 79 -0.992114701314478
42 76 75 -0.998026728428272
58 59 91 0.998026728428272
58 91 92 0.998026728428272
59 60 91 0.992114701314478
60 61 89 0.951056516295154
60 89 90 0.951056516295154
60 90 91 0.951056516295154
61 62 89 0.876306680043864
62 63 88 0.77051324277579
62 88 89 0.77051324277579
63 64 86 0.63742398974869
63 86 87 0.63742398974869
63 87 88 0.63742398974869
64 65 86 0.481753674101715
65 66 85 0.30901699437495
65 85 86 0.30901699437495
66 67 84 0.125333233564306
66 84 85 0.125333233564306
67 68 83 -0.0627905195293107
67 83 84 -0.0627905195293107
68 69 81 -0.248689887164853
68 81 82 -0.248689887164853
68 82 83 -0.248689887164853
69 70 80 -0.425779291565071
69 80 81 -0.425779291565071
70 71 80 -0.587785252292473
71 72 78 -0.72896862742141
71 78 79 -0.72896862742141
71 79 80 -0.72896862742141
72 73 77 -0.844327925502015
72 77 78 -0.844327925502015
73 74 77 -0.929776485888251
74 75 76 -0.982287250728688
74 76 77 -0.982287250728688
}]
table[row sep=crcr] {%
x y z
6.12323399573677e-17 6.12323399573677e-17 6.12323399573677e-17
-0.0627905195293134 -0.125333233564304 -0.187381314585725
-0.125333233564304 -0.248689887164855 -0.368124552684678
-0.187381314585725 -0.368124552684678 -0.535826794978996
-0.248689887164855 -0.481753674101715 -0.684547105928689
-0.309016994374947 -0.587785252292473 -0.809016994374947
-0.368124552684678 -0.684547105928689 -0.904827052466019
-0.425779291565073 -0.770513242775789 -0.968583161128631
-0.481753674101715 -0.844327925502015 -0.998026728428272
-0.535826794978996 -0.904827052466019 -0.992114701314478
-0.587785252292473 -0.951056516295154 -0.951056516295154
-0.63742398974869 -0.982287250728689 -0.876306680043864
-0.684547105928689 -0.998026728428272 -0.770513242775789
-0.728968627421411 -0.998026728428272 -0.63742398974869
-0.770513242775789 -0.982287250728689 -0.481753674101715
-0.809016994374947 -0.951056516295154 -0.309016994374948
-0.844327925502015 -0.904827052466019 -0.125333233564304
-0.876306680043864 -0.844327925502015 0.0627905195293128
-0.904827052466019 -0.770513242775789 0.248689887164855
-0.929776485888251 -0.684547105928689 0.425779291565073
-0.951056516295154 -0.587785252292473 0.587785252292473
-0.968583161128631 -0.481753674101716 0.728968627421411
-0.982287250728689 -0.368124552684678 0.844327925502015
-0.992114701314478 -0.248689887164855 0.929776485888251
-0.998026728428272 -0.125333233564305 0.982287250728689
-1 -1.83697019872103e-16 1
-0.998026728428272 0.125333233564304 0.982287250728689
-0.992114701314478 0.248689887164855 0.929776485888251
-0.982287250728689 0.368124552684678 0.844327925502015
-0.968583161128631 0.481753674101715 0.728968627421412
-0.951056516295154 0.587785252292473 0.587785252292473
-0.929776485888251 0.684547105928689 0.425779291565073
-0.904827052466019 0.770513242775789 0.248689887164855
-0.876306680043864 0.844327925502015 0.0627905195293133
-0.844327925502015 0.90482705246602 -0.125333233564304
-0.809016994374947 0.951056516295154 -0.309016994374947
-0.770513242775789 0.982287250728689 -0.481753674101714
-0.728968627421412 0.998026728428272 -0.637423989748689
-0.684547105928689 0.998026728428272 -0.770513242775789
-0.63742398974869 0.982287250728689 -0.876306680043863
-0.587785252292473 0.951056516295154 -0.951056516295153
-0.535826794978997 0.90482705246602 -0.992114701314478
-0.481753674101716 0.844327925502016 -0.998026728428272
-0.425779291565073 0.77051324277579 -0.968583161128631
-0.368124552684678 0.684547105928689 -0.90482705246602
-0.309016994374948 0.587785252292473 -0.809016994374948
-0.248689887164855 0.481753674101715 -0.684547105928689
-0.187381314585725 0.368124552684678 -0.535826794978996
-0.125333233564305 0.248689887164855 -0.368124552684678
-0.0627905195293132 0.125333233564305 -0.187381314585726
-1.83697019872103e-16 3.06161699786838e-16 -4.28626379701574e-16
0.0627905195293128 -0.125333233564304 0.187381314585725
0.125333233564304 -0.248689887164855 0.368124552684677
0.187381314585725 -0.368124552684677 0.535826794978997
0.248689887164855 -0.481753674101716 0.684547105928689
0.309016994374947 -0.587785252292474 0.809016994374947
0.368124552684678 -0.684547105928689 0.90482705246602
0.425779291565073 -0.770513242775789 0.968583161128631
0.481753674101716 -0.844327925502015 0.998026728428272
0.535826794978997 -0.904827052466019 0.992114701314478
0.587785252292473 -0.951056516295153 0.951056516295154
0.637423989748689 -0.982287250728689 0.876306680043864
0.684547105928689 -0.998026728428272 0.77051324277579
0.728968627421411 -0.998026728428272 0.63742398974869
0.770513242775789 -0.982287250728689 0.481753674101715
0.809016994374947 -0.951056516295154 0.30901699437495
0.844327925502015 -0.90482705246602 0.125333233564306
0.876306680043863 -0.844327925502016 -0.0627905195293107
0.904827052466019 -0.77051324277579 -0.248689887164853
0.929776485888251 -0.68454710592869 -0.425779291565071
0.951056516295154 -0.587785252292473 -0.587785252292473
0.968583161128631 -0.481753674101716 -0.72896862742141
0.982287250728689 -0.368124552684678 -0.844327925502015
0.992114701314478 -0.248689887164856 -0.929776485888251
0.998026728428272 -0.125333233564304 -0.982287250728688
1 -4.28626379701574e-16 -1
0.998026728428272 0.125333233564303 -0.982287250728689
0.992114701314478 0.248689887164855 -0.929776485888251
0.982287250728689 0.368124552684677 -0.844327925502015
0.968583161128631 0.481753674101715 -0.728968627421412
0.951056516295154 0.587785252292473 -0.587785252292472
0.929776485888251 0.684547105928689 -0.425779291565073
0.90482705246602 0.770513242775789 -0.248689887164856
0.876306680043864 0.844327925502015 -0.0627905195293155
0.844327925502016 0.904827052466019 0.125333233564301
0.809016994374948 0.951056516295153 0.309016994374947
0.77051324277579 0.982287250728688 0.481753674101717
0.728968627421412 0.998026728428272 0.637423989748688
0.684547105928689 0.998026728428272 0.770513242775789
0.63742398974869 0.982287250728689 0.876306680043865
0.587785252292473 0.951056516295154 0.951056516295153
0.535826794978996 0.904827052466019 0.992114701314478
0.481753674101715 0.844327925502015 0.998026728428271
0.425779291565073 0.77051324277579 0.968583161128632
0.368124552684679 0.68454710592869 0.904827052466019
0.309016994374948 0.587785252292474 0.80901699437495
0.248689887164855 0.481753674101716 0.68454710592869
0.187381314585725 0.368124552684678 0.535826794978996
0.125333233564305 0.248689887164856 0.368124552684682
0.0627905195293133 0.125333233564304 0.187381314585726
3.06161699786838e-16 5.51091059616309e-16 -9.80336419954471e-16
};
end{axis}
end{tikzpicture}%
Correct answer by LaTeXdraw-com on April 19, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP