TeX - LaTeX Asked on March 11, 2021
Good afternoon !
Under latex , i created a longtable :
documentclass[times]{iapress}
usepackage{moreverb}
usepackage[dvips,colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red]{hyperref}
%%
usepackage{amsmath, amssymb}
usepackage{pdflscape}
%%
defvolumeyear{202x}
defvolumenumber{x}
defvolumemonth{Month}
setcounter{page}{00}
renewcommand{baselinestretch}{1.01}
%%
usepackage{colortbl}
usepackage[margin=1cm]{caption}
usepackage{multirow}
usepackage{booktabs}
usepackage{float}
usepackage{graphicx}
graphicspath{{figures/}}
usepackage{longtable}
%usepackage{algorithm}
usepackage{algorithmic}
usepackage{pdfpages}
usepackage[ ruled,vlined]{algorithm2e}
usepackage{ifoddpage}
usepackage{blindtext}
usepackage{authblk}
usepackage{listings}
usepackage{xcolor}
%% attention here !
renewcommand{topfraction}{0.9}
lstset{
basicstyle=scriptsizett,
}
%%
definecolor{codegreen}{rgb}{0,0.6,0}
definecolor{codegray}{rgb}{0.5,0.5,0.5}
definecolor{codepurple}{rgb}{0.58,0,0.82}
definecolor{backcolour}{rgb}{0.95,0.95,0.92}
lstdefinestyle{mystyle}{
backgroundcolor=color{backcolour},
commentstyle=color{codegreen},
keywordstyle=color{magenta},
numberstyle=tinycolor{codegray},
stringstyle=color{codepurple},
basicstyle=ttfamilyfootnotesize,
breakatwhitespace=false,
breaklines=true,
captionpos=b,
keepspaces=true,
numbers=left,
numbersep=5pt,
showspaces=false,
showstringspaces=false,
showtabs=false,
tabsize=2
}
begin{document}
%% longtable of results
usepackage{tikz}
pagestyle{empty}
usepackage{everypage}
usepackage{lipsum}
usepackage{afterpage}
newcommand{Lpagenumber}{ifdimtextwidth=linewidthelsebgroup
dimendefmargin=0 %use margin instead of dimen0
ifoddvalue{page}margin=oddsidemargin
elsemargin=evensidemargin
fi
raisebox{dimexpr -topmargin-headheight-headsep-0.5linewidth}[0pt][0pt]{%
rlap{hspace{dimexpr margin+textheight+footskip}%
llap{rotatebox{90}{thepage}}}}%
egroupfi}
renewcommandthetable{11}
setlengthLTleft{-1cm}
setlengthLTright{-1cm}
footnotesize
begin{longtable}{|c|c|l|l|l|cl|}
caption{Some simulation results of the suggested hybrid optimizer}
hline
Test function
& Study domain
& multicolumn{2}{c|}{begin{tabular}[c]{@{}c@{}}
initial obtained solution (Algorithm 2 )
end{tabular}}
& multicolumn{1}{c|}{begin{tabular}[c]{@{}c@{}}
Obtained hybrid
optimizer solution
(Algorithm 3 )
end{tabular}}
& multicolumn{1}{l}{begin{tabular}[c]{@{}c@{}}
Objective
function
value of the
solution
end{tabular}}
& multicolumn{1}{c|}{} *
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Sphere ( dim = 13 ) end{tabular}}
& multirow{13}{*}{$ [-6,6]^{13} $ }
& $ Nbre_iter=5 ;; N=20 ; ; P=4 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=-0.553850768$
$X2=-1.493074761$
$X3=0.6767506500$
$X4=-0.602909613$
$X5=-1.047292736$
$X6=-0.191411525$
$X7=-0.079137285$
$X8=0.2588126665$
$X9=-1.444664397$
$X10=-0.92061842$
$X11=0.424461785$
$X12=-0.38351937$
$X13=-0.15875219$ end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=-4.9999e-09$
$X2=-5.0000e-09$
$X3=-5e-09$
$X4=-5e-09$
$X5=-5e-09$
$X6=-5e-09$
$X7=-5.000003e-09$
$X8=-4.307553e-09$
$X9=-5.0000006e-09$
$X10=-5e-09$
$X11=-5.000723e-09$
$X12=-5.392374e-09$
$X13=-5.00000000053859e-09$ end{tabular}}
& multirow{13}{*}{$ 3.22640e-16 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =50 $
$alpha=0.1$
$gamma=0.99$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Himmelblau’s
( dim = 2) end{tabular}}
& multirow{13}{*}{$ [-6,6]^{2} $ }
& $N_ter=6 ; N=40 ; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=3.156640$
$X2=2.194130$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=2.99876$
$X2=2.01136$
end{tabular}}
& multirow{13}{*}{$ 0.001983 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =100 $
$alpha=0.01$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Rastrigin function ( n = 8 )
end{tabular}}
& multirow{13}{*}{$ [-5.12,5.12]^{8} $ }
& $N_ter=13; N=40 ; P=10 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=0.2634143048$
$X2=0.9917922607$
$X3=1.2036587692$
$X4=1.0961852101$
$X5=1.1506293024 $
$X6=0.0556164503$
$X7=0.03749775658$
$X8=0.14211747971 $
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=-0.007194304$
$X2=1.0007044373$
$X3= 0.994805762 $
$X4=0.9897889558$
$X5=0.9949586327$
$X6=-0.004661976$
$X7=0.00352526731$
$X8=-0.00242884$
end{tabular}}
& multirow{13}{*}{$ 4.00990032 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =50 $
$alpha=0.1$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
newpage
caption{Some simulation results of the suggested hybrid optimizer}
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Ackley ( dim = 2 )
end{tabular}}
& multirow{13}{*}{$ [-5,5]^{2} $ }
& $N_iter=13 ;; N=18 ;; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=-0.1406797$
$X2=-0.1101426$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=-1.6473706210342e-08$
$X2=-3.51273940349251e-08$
end{tabular}}
& multirow{13}{*}{$ 1.097385e-07 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =50 $
$alpha=0.01$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Beale
end{tabular}}
& multirow{13}{*}{$ [-4.5,4.5]^{2} $ }
& $N_iter=13 ;; N=20 ;; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=2.77737$
$X2=0.63832$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=2.980414$
$X2=0.494759 $
end{tabular}}
& multirow{13}{*}{$ 6.54143085562211e-05 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =50 $
$alpha=0.01$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Shekel ( dim = 4 )
end{tabular}}
& multirow{13}{*}{$ [0,10]^{4} $ }
& $N_iter=3 ;; N=20 ;; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=3.964629112$
$X2=3.287228306$
$X3=4.047133078$
$X4=4.159858556$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=4.0060974456$
$X2=3.9907111167$
$X3=4.0069265117$
$X4=3.9947221534$
end{tabular}}
& multirow{13}{*}{$-10.51979349 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =10^3 $
$alpha=0.01$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
newpage
caption{Some simulation results of the suggested hybrid optimizer}
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Brown ( dim = 10 )
end{tabular}}
& multirow{13}{*}{$ [-1,4]^{10} $ }
& $N_iter=5 ;; N=40 ;; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=0.306416265$
$X2=-0.09236981$
$X3=-0.172197343$
$X4=1.225200175$
$X5=-0.009701219$
$X6=0.244447773$
$X7=0.101638211$
$X8=-0.34120112$
$X9=-0.599277565$
$X10=-0.31747776$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=0.0061166589$
$X2=-0.005133607$
$X3=-0.00524210132$
$X4= 0.00489577184$
$X5=-0.0051129652$
$X6=-0.004793115$
$X7=-0.0056673315$
$X8=-0.00363736016$
$X9=0.00454737504$
$X10=0.0049526585$
end{tabular}}
& multirow{13}{*}{$ 0.000447717474 $ } &
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =10^3 $
$alpha=0.01$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Rosenbrock ( dim=9 )
end{tabular}}
& multirow{13}{*}{$ [-7,7]^{9} $ }
& $N_iter=13 ;; N=60 ;; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=0.003125323$
$X2=0.376382705$
$X3=0.471540395$
$X4=0.723433923$
$X5=0.885845371$
$X6=1.092223856$
$X7=1.282321586$
$X8=1.436033536$
$X9=1.860066613$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=1.00956272$
$X2=0.99225927$
$X3=1.00972756$
$X4=1.00866214$
$X5=1.01872538$
$X6=1.03898545$
$X7=1.08676107$
$X8=1.17564322$
$X9=1.38090932$
end{tabular}}
& multirow{13}{*}{$ 0.197018127 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =1000 $
$alpha=0.01$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Alpine ( dim = 10)
end{tabular}}
& multirow{13}{*}{$ [0,10]^{10} $ }
& $N_iter=18 ;; N=25 ;; P=10 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=-1.44697297481$
$X2=-0.5245679914 $
$X3=-1.06582528$
$X4=-0.38062335$
$X5=1.680703443$
$X6=-0.519615052$
$X7=0.90813055351$
$X8=2.1929963152$
$X9=1.3502745645$
$X10=0.4988162137$
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=0.0049088240673$
$X2=0.02934661029$
$X3=-0.013279784336$
$X4=-0.013808317649$
$X5=-0.02789379609$
$X6=-0.0899579504$
$X7=0.04198229397$
$X8=3.242242583$
$X9=-0.0798609148$
$X10=-0.1128582965$
end{tabular}}
& multirow{13}{*}{$ 0.02013423150 $ } &
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =100 $
$alpha=0.1$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
newpage
caption{Some simulation results of the suggested hybrid optimizer}
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Colville ( dim = 4)
end{tabular}}
& multirow{13}{*}{$ [-10,10]^{4} $ }
& $N_iter=13 ;; N=40 ;; P=10 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=1.5033964240414$
$X2=1.518321258364$
$X3=1.282880998239$
$X4=1.814449944069$
$ $
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=1.0495214623$
$X2=1.1309573138$
$X3=0.97205952961$
$X4=0.960630041902$
end{tabular}}
& multirow{13}{*}{$ 0.199087493 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =100 $
$alpha=0.1$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}} Schaffer ( dim = 2 ) end{tabular}}
& multirow{13}{*}{$ [-100,100]^{2} $ }
& $N_iter=17 ;; N=20 ;; P=5 $
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=0.73493131146$
$X2=0.8971795174$
$ $
$ $
$ $
end{tabular} }
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}}
$X1=1.4414812e-06$
$X2=-1.871135e-06$
$ $
end{tabular}}
& multirow{13}{*}{$ 5.551115123e-15 $ } & *
cline{3-3}
&
& begin{tabular}[t]{@{}l@{}}
$ text{Iter} =10^{3} $
$alpha=0.1$
$gamma=0.9$
end{tabular}
& & & &
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
&&&&&&
hline
end{longtable}
end{document}
This gives the following results :
I’m searching to fit the table on the page margins.
The used iapress class files could be found here :
https://drive.google.com/file/d/1M3ZEjdt6PSXOuzN9d2Ex4CYdOjtBAGNI/view?usp=sharing
Thank you for help !
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP