TransWikia.com

Longtable isn't showing properly ( floated to right side )

TeX - LaTeX Asked on March 11, 2021

Good afternoon !

Under latex , i created a longtable :

documentclass[times]{iapress}
usepackage{moreverb}
usepackage[dvips,colorlinks,bookmarksopen,bookmarksnumbered,citecolor=red,urlcolor=red]{hyperref}

%%
usepackage{amsmath, amssymb}
usepackage{pdflscape}

%%
defvolumeyear{202x}
defvolumenumber{x}
defvolumemonth{Month}
setcounter{page}{00}
renewcommand{baselinestretch}{1.01}
%%

usepackage{colortbl}
usepackage[margin=1cm]{caption}
usepackage{multirow}
usepackage{booktabs}
usepackage{float}
usepackage{graphicx}
graphicspath{{figures/}}

usepackage{longtable}

%usepackage{algorithm}

usepackage{algorithmic}

usepackage{pdfpages}
usepackage[ ruled,vlined]{algorithm2e}
usepackage{ifoddpage}
usepackage{blindtext}
usepackage{authblk} 
usepackage{listings}
usepackage{xcolor}
%% attention here ! 
renewcommand{topfraction}{0.9}

lstset{
basicstyle=scriptsizett,
}
%%
definecolor{codegreen}{rgb}{0,0.6,0}
definecolor{codegray}{rgb}{0.5,0.5,0.5}
definecolor{codepurple}{rgb}{0.58,0,0.82}
definecolor{backcolour}{rgb}{0.95,0.95,0.92}

lstdefinestyle{mystyle}{
    backgroundcolor=color{backcolour},   
    commentstyle=color{codegreen},
    keywordstyle=color{magenta},
    numberstyle=tinycolor{codegray},
    stringstyle=color{codepurple},
    basicstyle=ttfamilyfootnotesize,
    breakatwhitespace=false,         
    breaklines=true,                 
    captionpos=b,                    
    keepspaces=true,                 
    numbers=left,                    
    numbersep=5pt,                  
    showspaces=false,                
    showstringspaces=false,
    showtabs=false,                  
    tabsize=2
}

begin{document}
%% longtable of results 
usepackage{tikz}


pagestyle{empty}
usepackage{everypage}
usepackage{lipsum}
usepackage{afterpage}
newcommand{Lpagenumber}{ifdimtextwidth=linewidthelsebgroup
  dimendefmargin=0 %use margin instead of dimen0
  ifoddvalue{page}margin=oddsidemargin
  elsemargin=evensidemargin
  fi
  raisebox{dimexpr -topmargin-headheight-headsep-0.5linewidth}[0pt][0pt]{%
    rlap{hspace{dimexpr margin+textheight+footskip}%
    llap{rotatebox{90}{thepage}}}}%
egroupfi}


 renewcommandthetable{11} 
 
setlengthLTleft{-1cm}
setlengthLTright{-1cm}
footnotesize        
begin{longtable}{|c|c|l|l|l|cl|} 

 
caption{Some simulation results of the suggested hybrid optimizer}

 
hline
Test function 
  & Study domain 
    & multicolumn{2}{c|}{begin{tabular}[c]{@{}c@{}} 
                          initial obtained solution (Algorithm 2 )
                          end{tabular}} 
      & multicolumn{1}{c|}{begin{tabular}[c]{@{}c@{}} 
                            Obtained hybrid 
                            optimizer solution 
                            (Algorithm 3 ) 
                            end{tabular}} 
        & multicolumn{1}{l}{begin{tabular}[c]{@{}c@{}} 
                             Objective 
                             function 
                             value  of the  
                             solution 
                             end{tabular}} 
          & multicolumn{1}{c|}{} * 
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}}   Sphere     ( dim = 13 )   end{tabular}} 
  & multirow{13}{*}{$ [-6,6]^{13} $ } 
    & $ Nbre_iter=5  ;; N=20 ; ; P=4 $  
      & multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
                        $X1=-0.553850768$  
                        $X2=-1.493074761$ 
                        $X3=0.6767506500$  
                        $X4=-0.602909613$  
                        $X5=-1.047292736$  
                        $X6=-0.191411525$  
                        $X7=-0.079137285$  
                        $X8=0.2588126665$  
                        $X9=-1.444664397$  
                        $X10=-0.92061842$  
                        $X11=0.424461785$  
                        $X12=-0.38351937$  
                        $X13=-0.15875219$ end{tabular} } 
        & multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
                          $X1=-4.9999e-09$  
                          $X2=-5.0000e-09$  
                          $X3=-5e-09$  
                          $X4=-5e-09$  
                          $X5=-5e-09$  
                          $X6=-5e-09$  
                          $X7=-5.000003e-09$  
                          $X8=-4.307553e-09$  
                          $X9=-5.0000006e-09$  
                          $X10=-5e-09$  
                          $X11=-5.000723e-09$  
                          $X12=-5.392374e-09$  
                          $X13=-5.00000000053859e-09$ end{tabular}} 
          & multirow{13}{*}{$ 3.22640e-16  $ } &  * 
cline{3-3}
 &  
   & begin{tabular}[t]{@{}l@{}} 
     $ text{Iter} =50 $
     $alpha=0.1$
     $gamma=0.99$    
     end{tabular} 
     &  &  &  &   
     &&&&&& 
     &&&&&&  
     &&&&&&  
     &&&&&& 
     &&&&&& 
     &&&&&& 
     &&&&&& 
     &&&&&& 
     &&&&&& 
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}}   Himmelblau’s
        ( dim = 2)   end{tabular}} 
& multirow{13}{*}{$ [-6,6]^{2} $ } 
& $N_ter=6 ; N=40 ; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=3.156640$  
        $X2=2.194130$ 
 end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=2.99876$  
        $X2=2.01136$  
end{tabular}} 
& multirow{13}{*}{$ 0.001983  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =100 $
    $alpha=0.01$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline

multirow{13}{*}{begin{tabular}[c]{@{}c@{}}    Rastrigin function ( n = 8 )
           end{tabular}} 
& multirow{13}{*}{$ [-5.12,5.12]^{8} $ } 
& $N_ter=13; N=40 ; P=10   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=0.2634143048$  
        $X2=0.9917922607$ 
        $X3=1.2036587692$ 
        $X4=1.0961852101$
        $X5=1.1506293024 $ 
        $X6=0.0556164503$ 
        $X7=0.03749775658$ 
        $X8=0.14211747971 $
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=-0.007194304$  
        $X2=1.0007044373$  
        $X3= 0.994805762 $  
        $X4=0.9897889558$  
        $X5=0.9949586327$  
        $X6=-0.004661976$  
        $X7=0.00352526731$  
        $X8=-0.00242884$  
end{tabular}} 
& multirow{13}{*}{$ 4.00990032  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =50 $
    $alpha=0.1$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline


newpage
caption{Some simulation results of the suggested hybrid optimizer}

hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}}      Ackley ( dim = 2 ) 
end{tabular}} 
& multirow{13}{*}{$ [-5,5]^{2} $ } 
& $N_iter=13 ;; N=18 ;; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=-0.1406797$  
        $X2=-0.1101426$ 
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=-1.6473706210342e-08$  
        $X2=-3.51273940349251e-08$  
end{tabular}} 
& multirow{13}{*}{$  1.097385e-07  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =50 $
    $alpha=0.01$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 

hline


multirow{13}{*}{begin{tabular}[c]{@{}c@{}}      Beale   
end{tabular}} 
& multirow{13}{*}{$ [-4.5,4.5]^{2} $ } 
& $N_iter=13 ;; N=20 ;; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=2.77737$  
        $X2=0.63832$ 
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=2.980414$  
        $X2=0.494759 $  
end{tabular}} 
& multirow{13}{*}{$  6.54143085562211e-05  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =50 $
    $alpha=0.01$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}}      Shekel ( dim = 4 )   
end{tabular}} 
& multirow{13}{*}{$ [0,10]^{4} $ } 
& $N_iter=3 ;; N=20 ;; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=3.964629112$  
        $X2=3.287228306$ 
        $X3=4.047133078$  
        $X4=4.159858556$
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=4.0060974456$  
        $X2=3.9907111167$  
        $X3=4.0069265117$  
        $X4=3.9947221534$
end{tabular}} 
& multirow{13}{*}{$-10.51979349  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =10^3 $
    $alpha=0.01$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline
newpage
caption{Some simulation results of the suggested hybrid optimizer}
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}}      Brown ( dim = 10 )   
end{tabular}} 
& multirow{13}{*}{$ [-1,4]^{10} $ } 
& $N_iter=5 ;; N=40 ;; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=0.306416265$  
        $X2=-0.09236981$ 
        $X3=-0.172197343$ 
        $X4=1.225200175$
        $X5=-0.009701219$ 
        $X6=0.244447773$ 
        $X7=0.101638211$ 
        $X8=-0.34120112$ 
        $X9=-0.599277565$ 
        $X10=-0.31747776$
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=0.0061166589$  
        $X2=-0.005133607$ 
        $X3=-0.00524210132$ 
        $X4= 0.00489577184$
        $X5=-0.0051129652$ 
        $X6=-0.004793115$ 
        $X7=-0.0056673315$ 
        $X8=-0.00363736016$ 
        $X9=0.00454737504$ 
        $X10=0.0049526585$
end{tabular}} 
& multirow{13}{*}{$ 0.000447717474  $ } &  
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =10^3 $
    $alpha=0.01$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline




multirow{13}{*}{begin{tabular}[c]{@{}c@{}}      Rosenbrock ( dim=9 )    
end{tabular}} 
& multirow{13}{*}{$ [-7,7]^{9} $ } 
& $N_iter=13 ;; N=60 ;; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=0.003125323$  
        $X2=0.376382705$ 
        $X3=0.471540395$ 
        $X4=0.723433923$
        $X5=0.885845371$ 
        $X6=1.092223856$ 
        $X7=1.282321586$ 
        $X8=1.436033536$ 
        $X9=1.860066613$
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=1.00956272$  
        $X2=0.99225927$ 
        $X3=1.00972756$ 
        $X4=1.00866214$
        $X5=1.01872538$ 
        $X6=1.03898545$ 
        $X7=1.08676107$ 
        $X8=1.17564322$ 
        $X9=1.38090932$
end{tabular}} 
& multirow{13}{*}{$   0.197018127  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =1000 $
    $alpha=0.01$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline

multirow{13}{*}{begin{tabular}[c]{@{}c@{}}        Alpine ( dim = 10)     
end{tabular}} 
& multirow{13}{*}{$ [0,10]^{10} $ } 
& $N_iter=18 ;; N=25 ;; P=10   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=-1.44697297481$  
        $X2=-0.5245679914 $ 
        $X3=-1.06582528$ 
        $X4=-0.38062335$
        $X5=1.680703443$ 
        $X6=-0.519615052$ 
        $X7=0.90813055351$ 
        $X8=2.1929963152$ 
        $X9=1.3502745645$ 
        $X10=0.4988162137$
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=0.0049088240673$  
        $X2=0.02934661029$ 
        $X3=-0.013279784336$ 
        $X4=-0.013808317649$
        $X5=-0.02789379609$ 
        $X6=-0.0899579504$ 
        $X7=0.04198229397$ 
        $X8=3.242242583$ 
        $X9=-0.0798609148$ 
        $X10=-0.1128582965$
end{tabular}} 
& multirow{13}{*}{$   0.02013423150  $ } &  
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =100 $
    $alpha=0.1$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline
newpage
caption{Some simulation results of the suggested hybrid optimizer}
hline
multirow{13}{*}{begin{tabular}[c]{@{}c@{}}       Colville ( dim = 4)     
end{tabular}} 
& multirow{13}{*}{$ [-10,10]^{4} $ } 
& $N_iter=13 ;; N=40 ;; P=10   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=1.5033964240414$  
        $X2=1.518321258364$ 
        $X3=1.282880998239$ 
        $X4=1.814449944069$
        $ $
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=1.0495214623$  
        $X2=1.1309573138$ 
        $X3=0.97205952961$ 
        $X4=0.960630041902$
end{tabular}} 
& multirow{13}{*}{$  0.199087493  $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =100 $
    $alpha=0.1$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline

multirow{13}{*}{begin{tabular}[c]{@{}c@{}}       Schaffer ( dim = 2 )          end{tabular}} 
& multirow{13}{*}{$ [-100,100]^{2} $ } 
& $N_iter=17 ;; N=20 ;; P=5   $  
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=0.73493131146$  
        $X2=0.8971795174$ 
        $ $ 
        $ $
        $ $
end{tabular} } 
& multirow{13}{*}{begin{tabular}[c]{@{}l@{}} 
        $X1=1.4414812e-06$  
        $X2=-1.871135e-06$ 
        $ $
end{tabular}} 
& multirow{13}{*}{$  5.551115123e-15 $ } &  * 
cline{3-3}
&  
& begin{tabular}[t]{@{}l@{}} 
    $ text{Iter} =10^{3} $
    $alpha=0.1$
    $gamma=0.9$    
end{tabular} 
&  &  &  &   
&&&&&& 
&&&&&&  
&&&&&&  
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
&&&&&& 
hline
 
  
end{longtable}
end{document}

This gives the following results :

enter image description here

I’m searching to fit the table on the page margins.

The used iapress class files could be found here :

https://drive.google.com/file/d/1M3ZEjdt6PSXOuzN9d2Ex4CYdOjtBAGNI/view?usp=sharing

Thank you for help !

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP