TeX - LaTeX Asked by faisal shahzad on August 28, 2020
Here you go:
documentclass[10pt,a4paper]{article}
usepackage{amsmath}
usepackage{amsfonts}
usepackage{amssymb}
usepackage{graphicx}
begin{document}
$ufrac{partial u}{partial x}+vfrac{partial u}{partial y}+wfrac{partial u}{partial z}+lambda_1begin{pmatrix}
u^2frac{partial^2 u}{partial x^2}+vfrac{partial^2 u}{partial y^2}+w^2frac{partial^2 u}{partial z^2}+2uvfrac{partial^2 u}{partial xpartial y}+2vwfrac{partial^2 u}{partial ypartial z}+2uwfrac{partial^2 u}{partial xpartial z}
end{pmatrix} = vfrac{partial^2 u}{partial z^2},$
end{document}
this will give you:
PS: Welcome to TeX.se, from next time, please provide a MWE.
Answered by Raaja_is_at_topanswers.xyz on August 28, 2020
Here is a start:
documentclass[]{article}
usepackage{amsmath}
begin{document}
begin{equation}
ufrac{partial u}{partial x}+...
+lambda_1
begin{pmatrix}
u^2 frac{partial^2 u}{partial x^2}+...
+ 2 uv frac{partial^2 u}{partial x partial y}+...
end{pmatrix} = v frac{partial^2 u}{partial z^2}
end{equation}
end{document}
Answered by Hafid Boukhoulda on August 28, 2020
Borrow a little from all answer and make a little change (such as change v
to nu
in the right-hand side)
documentclass{article}
usepackage{amsmath}
begin{document}
begin{equation}
ufrac{partial u}{partial x}+vfrac{partial u}{partial y}+wfrac{partial u}{partial z}+lambda_1begin{pmatrix}
u^2frac{partial^2 u}{partial x^2}+vfrac{partial^2 u}{partial y^2}+w^2frac{partial^2 u}{partial z^2}+2uvfrac{partial^2 u}{partial xpartial y}+2vwfrac{partial^2 u}{partial ypartial z}+2uwfrac{partial^2 u}{partial xpartial z}
end{pmatrix} = nufrac{partial^2 u}{partial z^2},
tag{1.25}
end{equation}
end{document}
Answered by user156344 on August 28, 2020
A variation on the theme, but with a greater emphasis on simplifying the input:
documentclass{article}
usepackage{amsmath}
usepackage{xparse}
newcommand{pdiff}{mathop{}!partial}
ExplSyntaxOn
NewDocumentCommand{pder}{omm}
{
frac{pdiffIfValueT{#1}{^{#1}}#2}{faisal_pder_vars:n { #3 }}
}
cs_new_protected:Nn faisal_pder_vars:n
{
clist_map_inline:nn { #1 } { pdiff##1 }
}
ExplSyntaxOff
begin{document}
begin{equation}
upder{u}{x}+vpder{u}{y}+wpder{u}{z}+
lambda_1
left(begin{gathered}
u^2pder[2]{u}{x^2}+vpder[2]{u}{y^2}+w^2pder[2]{u}{z^2}
mspace{-medmuskip}{}
+2uvpder[2]{u}{x,y}+2vwpder[2]{u}{y,z}+2uwpder[2]{u}{x,z}
end{gathered}right)
= nupder[2]{u}{z^2},
end{equation}
begin{equation}
begin{split}
upder{u}{x}&+vpder{u}{y}+wpder{u}{z}
+lambda_1biggl(
u^2pder[2]{u}{x^2}+vpder[2]{u}{y^2}+w^2pder[2]{u}{z^2}
&+2uvpder[2]{u}{x,y}+2vwpder[2]{u}{y,z}+2uwpder[2]{u}{x,z}biggr)
= nupder[2]{u}{z^2},
end{split}
end{equation}
end{document}
The syntax for pder
is
In the first case I used mspace{-medmuskip}{}+
in order to have the plus sign correctly spaced. I used gathered
instead of pmatrix
because it is semantically sounder.
Answered by egreg on August 28, 2020
With a few shortcut macros it's much easier:
plain TeX version:
let~catcode~`86~`j0~`X13~`C1~`D2~`M3jdefX81C~`8113jdefDXZZ81C~
`8113DXYY81CZ81jletDYLLjletYFFjfiYNNjdefYPPjpartialZIZAZBZj{Zj}Y
EEjexpandafterYOOjelseYKKjifxNI818283CL}81NAC82DNBC83Djfuturelet
jTjHDNjHCKjT}L{AOL{BF{DXUUCI)jpCjp)CDDDY VVjoverNjp)818283CKX81X
CP82VP83DOCP^C81D82VjbC81DC83DDFDYRRjrelaxNjb8182Cjd8182RDNjd81%
8283CK83RP82^C81DOP82P83FDY!!uY@@vY##wY$$xYj%%yY&&zXvv81C81^2DMM
!U!$+@U!%+#U!&+jlambda_1jleft(v!U)2! $+v@U)2!%+v#U)2!&jatop+2!@U
)2!C$%D+2@#U)2!C%&D+2!#U)2!C$&Djright)=jnuU)2!&jeqno(1.25)MMjbye
LaTeX version:
documentclass{article}begin{document}
let~catcode~`86~`j0~`X13~`C1~`D2~`M3jdefX81C~`8113jdefDXZZ81C~
`8113DXYY81CZ81jletDYLLjletYFFjfiYNNjdefYPPjpartialZIZAZBZj{Zj}Y
EEjexpandafterYOOjelseYKKjifxNI818283CL}81NAC82DNBC83Djfuturelet
jTjHDNjHCKjT}L{AOL{BF{DXUUCI)jpCjp)CDDDY VVjoverNjp)818283CKX81X
CP82VP83DOCP^C81D82VjbC81DC83DDFDYRRjrelaxNjb8182Cjd8182RDNjd81%
8283CK83RP82^C81DOP82P83FDY!!uY@@vY##wY$$xYj%%yY&&zXvv81C81^2DMM
!U!$+@U!%+#U!&+jlambda_1jleft(v!U)2!$+v@U)2!%+v#U)2!&jatop+2!@U)
2!C$%D+2@#U)2!C%&D+2!#U)2!C$&Djright)=jnuU)2!&jeqno(1.25)MMjstop
output:
Inspired by David Carlisle's xii
:)
Answered by Phelype Oleinik on August 28, 2020
$$u frac{partial u}{partial x}+v frac{partial u}{partial y}+w frac{partial u}{partial z}+lambda_{1}left(begin{array}{c}
u^{2} frac{partial^{2} u}{partial x^{2}}+v^{2} frac{partial^{2} u}{partial y^{2}}+w^{2} frac{partial^{2} u}{partial z^{2}}
+2 u v frac{partial^{2} u}{partial x partial y}+2 v w frac{partial^{2} u}{partial partial partial z}+2 u w frac{partial^{2} u}{partial x partial z}
end{array}right)=nu frac{partial^{2} u}{partial z^{2}}$$
Answered by mamman on August 28, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP