TransWikia.com

Beamer/Latex, is there a way to put a theorem in an "itemize", and hide the bullet?

TeX - LaTeX Asked by Surb on April 28, 2021

frametitle{Intro LDP: Brownian Motion 2}
begin{itemize}
item<1-> Let $(W_t)_{tin [0,T]}$ a Brownian Motion.
item<2-> For $varepsilon >0$ let $mu_varepsilon $ the PFM of $varepsilon W$ on $mathcal C_0[0,T]$
item<3-> begin{theo}[Schiler]
$(mu_varepsilon )_{varepsilon >0}$ satisfies LDP with rate function begin{equation}I_W(varphi )=begin{cases}frac{1}{2}int_0^T dot varphi ^2&varphi in H_0^1[0,T]+infty &text{otherwise.}end{cases}end{equation}
end{theo}
end{itemize}

end{frame}

I get this enter image description here

And I don’t like the 3rd bullet under the theorem. Is there a way to hide it ? An other solution was to put the theorem out begin{itemize}end{itemize}, but then, it won’t appear after the first step (I want to show the bullet step by step).

One Answer

Here are two possibilites, both resulting in the following output. (Since there was no MWE give, I had to make some not so accurate assumptions about the code.)

enter image description here

documentclass{beamer}

usecolortheme{orchid}

begin{document}

begin{frame}
frametitle{Intro LDP: Brownian Motion 2}
begin{itemize}
item<1-> Let $(W_t)_{tin [0,T]}$ a Brownian Motion.
item<2-> For $varepsilon >0$ let $mu_varepsilon $ the PFM of $varepsilon W$ on $mathcal C_0[0,T]$
item[]<3-> begin{theorem}[Schiler]
$(mu_varepsilon )_{varepsilon >0}$ satisfies LDP with rate function begin{equation}I_W(varphi )=begin{cases}frac{1}{2}int_0^T dot varphi ^2&varphi in H_0^1[0,T]+infty &text{otherwise.}end{cases}end{equation}
end{theorem}
end{itemize}
end{frame}




begin{frame}
frametitle{Intro LDP: Brownian Motion 2}
begin{itemize}
item<1-> Let $(W_t)_{tin [0,T]}$ a Brownian Motion.
item<2-> For $varepsilon >0$ let $mu_varepsilon $ the PFM of $varepsilon W$ on $mathcal C_0[0,T]$pause
end{itemize}
pause
begin{theorem}[Schiler]
$(mu_varepsilon )_{varepsilon >0}$ satisfies LDP with rate function begin{equation}I_W(varphi )=begin{cases}frac{1}{2}int_0^T dot varphi ^2&varphi in H_0^1[0,T]+infty &text{otherwise.}end{cases}end{equation}
end{theorem}
end{frame}


end{document}

Correct answer by leandriis on April 28, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP