Physics Asked by AndresB on December 9, 2020
In classical field theory (for a single field $psi$) the dynamical variables are defined to be functions of the fields $psi$, $pi$, $partial_{x_{i}}psi$ and maybe $mathbf{r}$, where $pi$ is the conjugated field to $psi$.
For $F=intmathcal{F},dmathbf{r}$ and $G=intmathcal{G},dmathbf{r}$, where F and G are dynamical variables, the functional Poisson bracket can be defined according to (José and Saletan, “Classical Dynamics: A Contemporary Approach”, cap 9))
$$left{ F,Gright} ^{f}=intopleft(frac{delta F}{deltapsi}frac{delta G}{deltapi}-frac{delta F}{deltapi}frac{delta G}{deltapsi}right)dmathbf{x},$$ where the derivatives are functional derivatives. The fields themselves have the canonical property
$$left{ psi(mathbf{y}),pi(mathbf{z})right} =delta(mathbf{y}-mathbf{z}),$$
$$left{ pi(mathbf{y}),pi(mathbf{z})right} =left{ psi(mathbf{y}),psi(mathbf{z})right} =0.$$
So far so good, but I’m not sure how to handle the functional derivatives. I’m interested, for example, in the following bracket
$$left{ F(mathbf{x}),pi(mathbf{z})right} ^{f}$$ $(F(mathbf{x})equiv F(psi(mathbf{x}),pi(mathbf{x}),partial_{x_{i}}psi(mathbf{x}))$
Using $frac{deltapi(mathbf{z})}{deltapsi}=0$ and $frac{deltapi(mathbf{z})}{deltapi}=delta(mathbf{y}-mathbf{x})$, I think the answer is
$$left{ F(mathbf{x}),pi(mathbf{z})right} ^{f}=frac{delta F(mathbf{z})}{deltapsi}.$$
Is this result correct?
You are on the right track, but some clarification is needed. First as you mentioned, the Poisson bracket is defined over functionals of the local fields, i.e. an object of the form $F=int d^n x {cal F}[psi(x),pi(x)]$. Note that here we integrate over $x$, so $F$ is not a function of $x$. Accordingly, your last equation should read begin{align} {F,pi(z)}&=int d^nx {{cal F}[psi(x),pi(x)],pi(z)}=int d^nx frac{delta {cal F}}{delta psi(x)}frac{delta pi(z)}{delta pi(x)}=int d^nx frac{delta {cal F}}{delta psi(x)}delta^n(z-x)=frac{delta {cal F}[psi(z),pi(z)]}{delta psi(z)} end{align} So in your last equation, there is two typos: on the lhs, there is no argument $x$ for $F$, and on the rhs, it is the density $cal{F}$ instead of the functional $F$.
If you insist on having the left hand side of your last equation as it is, you can start by smearing the density $cal{F}$ with a delta function, i.e. you take your functional to be $F(x)=int d^nx' delta^n(x'-x){cal F}[psi(x'),pi(x')]$. Now repeating the procedure you find begin{align} {F(x),pi(z)}&=frac{delta {cal F}[psi(z),pi(z)]}{delta psi(z)},delta^n(x-z). end{align}
Answered by Ali Seraj on December 9, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP