Physics Asked by stefan .gkotsis on June 3, 2021
Ok so basically I am trying to prove that the following expression:
Can be written using matrices like this:
Any suggestions on how to approach this?
To prove that you need to know this,
$a_{ij}b_{jn} = (textbf{a} cdot textbf{b})_{in} = textbf{a} cdot textbf{b}$
Note that the position of index $j $ .
$a'_{mn} = v_{mi} v_{nj} a_{ij}$
and you want to show
$textbf{a}' = textbf{v} cdot textbf{a} cdot textbf{v}^T $
So,
$a'_{mn} = v_{mi} v_{nj} a_{ij} = $
$a'_{mn} = v_{nj} v_{mi} a_{ij} =$
$a'_{mn} = v_{nj} (textbf{v} cdot textbf{a})_{mj} =$
$a'_{mn} = (textbf{v} cdot textbf{a})_{mj} v_{nj} =$
$a'_{mn} = (textbf{v} cdot textbf{a})_{mj} v^T_{jn} =$
$a'_{mn} = (textbf{v} cdot textbf{a} cdot textbf{v}^T)_{mn} implies$
$textbf{a}' = textbf{v} cdot textbf{a} cdot textbf{v}^T $
Correct answer by Kian Maleki on June 3, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP