TransWikia.com

Schrodinger equation for the pseudoharmonic potential using the generalized paremetric Nikiforov-Uvarov method?

Physics Asked by user 123456789 on July 25, 2021

The pseudoharmonic potential is

$$V(r) = V_{0} left( frac{r}{r_{0}} – frac{r}{r_{0}} right) $$
The Schrodinger equation after substitution potential
$$frac{d^2R}{ds^2} + frac{frac{3}{2}}{s} + frac{1}{s^2} left[frac{mu}{2 hbar^2} left( E_{nl} +2V_{0}right)s – frac{mu}{2 hbar^2}left(V_{0}r_{0}^2 + frac{l(l+1)hbar^{2}}{2mu}right)-left(frac{v_{0} mu}{r_{0} 2 hbar^2} right)s^2right]R(s) =0$$

Now comper with paremetric Nikiforov-Uvarov equation :
$$R^{primeprime}(r) + frac{alpha_{1}-alpha_{2}s}{s(alpha_{4} -alpha_{3}s)} R^{prime}(s) + left[frac{-varepsilon_{1} s^{2} + varepsilon _{2}s-varepsilon _{3}}{s^{2}(alpha_4 – alpha_2 s)^2}right] R(s)=0$$

Then we got:

$$alpha_1=3/2 , alpha_2 = 0 , alpha_3 =0,alpha_4=1$$

The problem with $alpha_3 =0$ because the energy will be infinity, so How to fix $alpha_3$?

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP