Physics Asked on May 8, 2021
For a sourceless medium perturbed as shown below, how can I prove that divergence of $vec E$ and $vec H$ equal to zero?
$$vec D = varepsilon vec E -j xi vec B$$
$$vec H = dfrac{1}{mu} vec B -j xi vec E$$
My initial intuition was finding this by applying a vector identity.
$$nablatimesnablatimes vec E = nabla (nabla bullet vec E)-nabla^2 vec E$$
We know Maxwell’s equations for a sourceless medium as
$$nabla times vec E = -jomega vec B$$
and
$$nabla times vec H = jomega vec D$$
For deriving for the $ vec E$ field, we know the wave equation as $nablatimesnablatimes vec E-2muomegaxi nablatimes vec E-omega^2 mu varepsilon vec E = 0$
So, $nabla (nabla bullet vec E)-nabla^2 vec E-2muomegaxi nablatimes vec E-omega^2 mu varepsilon vec E = 0$
As we found the divergence term, we should be able to prove $nablabullet vec E =0$.
How can I derive the rest of the problem?
Electric field at any arbitrary point $mathcal{r}$ due to a charge density $rho$ present in a given volume $mathcal{V}$ is given by Coulomb's law as -
$$vec{E} = frac{1}{4piepsilon_{0}}int_{mathcal{V}}frac{rho hat{r} }{r^2} dtau$$
We will evaluate the surface integral of the $vec{E}$ over a sphere containing the source charges. $$oint vec{E} cdot dvec{a} = frac{1}{4piepsilon_{0}}intfrac{rho hat{r} }{r^2} cdot r^2sin (theta) dphi dtheta hat{r} dtau$$ or, $$oint vec{E} cdot dvec{a} = intfrac{rho}{epsilon_{0}}dtau$$ Invoking Fundamental theoram of gradient - $$int nabla cdot vec{E} dtau = oint vec{E}cdot dvec{a}$$ So,$$int nabla cdot vec{E} dtau = intfrac{rho}{epsilon_{0}}dtau$$ Since this is true for any given volume , thus we get - $$nabla cdot vec{E} = frac{rho}{epsilon_0}$$ Now in a charge free region $rho = 0 $ so you get $nabla cdot vec{E} = 0$. A similar exercise with Biot-Savart law will give you the desired result for the magnetic field.
Correct answer by Shubham Kumar on May 8, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP