Physics Asked by Melanie on April 12, 2021
We’re asked to maximize voltage across the resistor RL, then do the same for current and power. But to find a value of R that maximizes VL, I think we’d just say infinity. And to maximize current through the resistor RL, would it not be for RL = 0? But then how do you find a value of RL that maximizes power delivered to RL?
Well, we know that the power through a resistor is given by:
$$text{P}_text{R}left(tright)=text{V}_text{R}left(tright)cdottext{I}_text{R}left(tright)tag1$$
Ohm's law, states:
$$text{V}_text{R}left(tright)=text{I}_text{R}left(tright)cdottext{R}tag2$$
In your circuit, we know that the voltage across the load resistor is given by:
$$text{V}_{text{R}_text{L}}=frac{text{R}_text{L}}{text{R}_text{L}+text{R}_text{s}}cdottext{V}_text{s}tag3$$
The current in the circuit is given by:
$$text{I}_{text{R}_text{L}}=text{I}_text{s}=frac{text{V}_text{s}}{text{R}_text{L}+text{R}_text{s}}tag4$$
So, the power in the resistor $text{R}_text{L}$ is given by:
$$text{P}_{text{R}_text{L}}=frac{text{R}_text{L}}{text{R}_text{L}+text{R}_text{s}}cdottext{V}_text{s}cdotfrac{text{V}_text{s}}{text{R}_text{L}+text{R}_text{s}}=frac{text{R}_text{L}text{V}_text{s}^2}{left(text{R}_text{L}+text{R}_text{s}right)^2}tag5$$
In order to calculate $text{R}_text{L}$ to find the maximum, we find:
$$frac{partialtext{P}_{text{R}_text{L}}}{partialtext{R}_text{L}}=0spaceLongleftrightarrowspacefrac{left(text{R}_text{s}-text{R}_text{L}right)text{V}_text{s}^2}{left(text{R}_text{L}+text{R}_text{s}right)^3}=0spaceLongleftrightarrowspacetext{R}_text{L}=text{R}_text{s}tag6$$
Then we get:
$$text{P}_{text{R}_text{L}}=frac{text{R}_text{s}text{V}_text{s}^2}{left(text{R}_text{s}+text{R}_text{s}right)^2}=frac{text{V}_text{s}^2}{4text{R}_text{s}}tag7$$
Answered by Jan on April 12, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP