Physics Asked on February 23, 2021
In a particular reference frame with coordinates $x^mu$, we can define a current density 4-vector $J^mu=(crho,vec{J})$ where $rho$ is the charge density and $vec{J}$ is the current density.
The continuity equation in this frame is then $$frac{partial J^mu}{partial x^mu}=0.$$
How can it be shown that this equation holds in a Lorentz boosted frame with coordinates $x’^mu=Lambda^mu_nu x ^nu$,
i.e. $$frac{partial J’^mu}{partial x’^mu}=0$$ is true?
From $J'^mu=Lambda^mu_nu J^nu$ take derivative on both sides $$frac{partial J'^mu}{partial x'^mu}=Lambda^mu_nu frac{partial J^nu}{partial x'^mu}$$ Note that $frac{partial}{partial x'^mu}=Lambda^sigma_mufrac{partial}{partial x^sigma}$ Then we have $$frac{partial J'^mu}{partial x'^mu}=Lambda^mu_nu frac{partial J^nu}{partial x'^mu}=Lambda^mu_nuLambda^sigma_mufrac{partial J^nu}{partial x^sigma}=delta^sigma_nufrac{partial J^nu}{partial x^sigma}=frac{partial J^nu}{partial x^nu}=0$$
Correct answer by Frank on February 23, 2021
Generally begin{align} &texttt{The 4-gradient contravariant vector operator} nonumber & qquad qquad qquad partial^{mu}boldsymbol{equiv}dfrac{partial }{partial x_{mu}}boldsymbol{=}left(dfrac{partial }{partial x^{0}},,boldsymbol{-nabla}right) tag{01a}label{01a} &texttt{The 4-gradient covariant vector operator} nonumber &qquad qquad qquad partial_{mu}boldsymbol{equiv}dfrac{partial }{partial x^{mu}}boldsymbol{=}left(dfrac{partial }{partial x^{0}},,boldsymbol{+nabla}right) tag{01b}label{01b} end{align} The 4-divergence of a 4-vector $A^{mu}boldsymbol{=}left(A^{0},mathbf{A}right),A_{mu}boldsymbol{=}left(A^{0},boldsymbol{-}mathbf{A}right) $ is the invariant begin{equation} partial^{mu}A_{mu}boldsymbol{=}partial_{mu}A^{mu}boldsymbol{=}dfrac{partial A^{0} }{partial x^{0}}boldsymbol{+nablacdot}mathbf{A} tag{02}label{02} end{equation}
$=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=$
Note : May be in the future you ask yourself if the converse of eqref{02} is true. No, it's not : if $A^{mu}boldsymbol{=}left(A^{0},mathbf{A}right)$ is a 4-dimensional quantity then begin{equation} partial_{mu}A^{mu}boldsymbol{=}texttt{invariant}quad boldsymbol{=!ne!Rightarrow}quad A^{mu}boldsymbol{=}texttt{contravariant Lorentz 4-vector} tag{03}label{03} end{equation}
$-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!-!!$
Counter example
Consider that $Y^{mu}left(mathbf{x},tright)boldsymbol{=}left[!!left[ Y^{0}left(mathbf{x},tright),mathbf{Y}left(mathbf{x},tright)right]!!right]$ is a (contravariant) 4-vector function of the space-time coordinates $left(mathbf{x},tright)$. According to equation eqref{02} its 4-divergence is invariant begin{equation} partial_{mu}Y^{mu}boldsymbol{=}dfrac{partial Y^{0} }{partial x^{0}}boldsymbol{+nablacdot}mathbf{Y}boldsymbol{=}texttt{invariant} tag{04}label{04} end{equation} Now consider a 4-dimensional vector $rm a^{mu}boldsymbol{=}left(a^{0},mathbf{a}right)boldsymbol{=}left(a^{0},a^{1},a^{2},a^{3}right)$ with components 4 arbitrary real numbers constants, that is not depending on the space-time coordinates $left(mathbf{x},tright)$ and form the 4-dimensional vector begin{equation} A^{mu}boldsymbol{=}Y^{mu}boldsymbol{+}rm a^{mu} tag{05}label{05} end{equation} Then begin{equation} partial_{mu}A^{mu}boldsymbol{=}partial_{mu}Y^{mu}boldsymbol{+}overbrace{partial_{mu}rm a^{mu}}^{0}boldsymbol{=}partial_{mu}Y^{mu}boldsymbol{=}texttt{invariant} tag{06}label{06} end{equation} But $A^{mu}$ as defined by equation eqref{05} in not a 4-vector due mainly to the arbitrariness of $rm a^{mu}$.
Answered by Frobenius on February 23, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP