Physics Asked on April 17, 2021
$p_{omega}^{(2)}$ is given by $$frac{1}{sqrt{2piomega}}frac{1}{r}P_{omega}^-exp{Bigg(-ifrac{omega}{kappa}}bigg(logBig(frac{v_0-v}{CD}Big)bigg)Bigg)$$
this expression is valid for $v<v_0$ and $v_0-vapprox epsilon$ where $epsilon$ is a small number such that our ray optics analysis is valid. Also $p_{omega}^{(2)}=0$ for $v>v_0$. To calculate $alpha_{omegaomega’}^{(2)}$ we need to take fourier transform of $p_{omega}^{(2)}$ w.r.t $v$
$$alpha_{omegaomega’}^{(2)}=frac{rsqrt{omega’}}{sqrt{2pi}}int_{-infty}^{infty}p_{omega}^{(2)}e^{-iomega’v}dv$$
$$=frac{rsqrt{omega’}}{sqrt{2pi}}int_{-infty}^{v_0}p_{omega}^{(2)}e^{-iomega’v}dv$$
$$*=frac{rsqrt{omega’}}{sqrt{2pi}}{int_{-infty}^{v_0}dv e^{-iomega’v}frac{1}{sqrt{2piomega}}frac{1}{r}P_{omega}^-exp{Bigg(-ifrac{omega}{kappa}}bigg(logBig(frac{v_0-v}{CD}Big)bigg)Bigg)}$$
$$frac{P_{omega}^-}{2pi}sqrt{frac{omega’}{omega}}(CD)^{frac{iomega}{kappa}}int_{-infty}^{v_0}dv e^{-iomega’v}(v_0-v)^{frac{-iomega}{kappa}}$$
doing the substitution $z=v_0-v$
$$frac{P_{omega}^-}{2pi}sqrt{frac{omega’}{omega}}(CD)^{frac{iomega}{kappa}}e^{-iomega’v_0}int_{0}^{infty}dzexp{(izomega’)}z^{-frac{iomega}{kappa}}$$
$$becauseint_{0}^{infty}t^{b}e^{-at}=frac{Gamma(b+1)}{a^{b+1}}$$
$$alpha_{omegaomega’}^{(2)}=frac{P_{omega}^-}{2pi}sqrt{frac{omega’}{omega}}(CD)^{frac{iomega}{kappa}}e^{-iomega’v_0}Gammabigg(1-frac{iomega}{kappa}bigg)(-iomega’)^{-1+frac{iomega}{kappa}}$$
This is the expression that is given in the paper (2.19). My doubt lies in the expression marked $*$, I understand since we are calculating asymptotic expansion we can let $omega’$ quite large so $v$ term in $e^{iomega’v}$ can be made quite small but the problem lies in $p_{omega}^2$ term since our first expression is only valid for $v$ close to $v_0$}. Since I’m not well versed with asymptotic expansion it may actually be the right way of doing expansion. Can somebody help me with this expansion?
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP