Physics Asked by Jilal Jahangir on February 4, 2021
In Weinberg’s Gravitation and Cosmology, the author mentions that an infinitesimal Lorentz transformation (in the four-vector representation of the Lorentz group) has the form $$Lambda^{alpha}_{phantom{alpha}beta}=delta^{alpha}_{phantom{alpha}beta}+omega^{alpha}_{phantom{alpha}beta}.tag{$dagger$}$$ It is then straightforward to verify that the $omega$-matrix must satisfy $$omega_{gammadelta}=-omega_{deltagamma}.tag{$*$}$$ I’m okay with that. Then, Weinberg says that the matrix representation $D(Lambda)$ of such a transformation (now a general, say $ntimes n$ representation) must satisfy $$D(1+omega)=1+frac{1}{2}omega^{alphabeta}sigma_{alphabeta}tag{$**$}$$ where $sigma_{alphabeta}$ are a set of matrices which may be chosen to be antisymmetric, by virtue of (*).
I have no idea where the exact form ( ** ) comes from. What’s a little confusing to me is that in (†), I believe that $omega$ may be any any linear combination of the generators of the four-vector representation of the Lorentz group and $omega^alpha_{phantom{alpha}beta}$ are its matrix elements, while in (**) $omega$ seems to be a set of infinitesimal parameters, whilst $sigma_{alphabeta}$ are now the generators (I think I know the $1/2$ prevents counting each generator twice).
This is what's happening. You have $vartheta^{gammadelta}$ parameters for the $text{SO}(1,3)$; they constitute an antisimmetric matrix in their $gamma,delta$ indexes, so that the actual free parameters are the usual $6$ for the Lorentz transformation. That said consider that an infinitesimal Lorentz transformation will be $$ {Lambda^alpha}_beta approx {mathbb{I}^alpha}_beta + frac{1}{2} vartheta^{gammadelta} {mathbb{J}^{gammadeltaalpha}}_beta $$ where you got ${left(mathbb{J}^{gammadelta}right)^alpha}_beta=-{left(mathbb{J}^{deltagamma}right)^alpha}_beta,,forall,alpha,beta$, so that you can think it as an antisymmetric (but just on $gamma,delta$ indexes) matrix of matrices begin{gather*} begin{pmatrix} {left(mathbb{J}^{gammadelta}right)^alpha}_beta end{pmatrix} = begin{pmatrix} mathbb{O}&mathbb{J}^{01}&mathbb{J}^{02}&mathbb{J}^{03} -mathbb{J}^{01}&mathbb{O}&mathbb{J}^{12}&mathbb{J}^{13} -mathbb{J}^{02}&-mathbb{J}^{12}&mathbb{O}&mathbb{J}^{23} -mathbb{J}^{03}&-mathbb{J}^{13}&-mathbb{J}^{23}&mathbb{O} end{pmatrix} mathbb{J}^{01} = begin{pmatrix} 0&1&0&0 1&0&0&0 0&0&0&0 0&0&0&0 end{pmatrix}, , mathbb{J}^{02} = begin{pmatrix} 0&0&1&0 0&0&0&0 1&0&0&0 0&0&0&0 end{pmatrix}, , mathbb{J}^{03} = begin{pmatrix} 0&0&0&1 0&0&0&0 0&0&0&0 1&0&0&0 end{pmatrix} mathbb{J}^{12} = begin{pmatrix} 0&0&0&0 0&0&-1&0 0&1&0&0 0&0&0&0 end{pmatrix}, , mathbb{J}^{13} = begin{pmatrix} 0&0&0&0 0&0&0&-1 0&0&0&0 0&1&0&0 end{pmatrix}, , mathbb{J}^{23} = begin{pmatrix} 0&0&0&0 0&0&0&0 0&0&0&-1 0&0&1&0 end{pmatrix} end{gather*} P.S. $$ mathbb{G}^{alphagamma} {mathbb{I}^delta}_beta - mathbb{G}^{alphadelta} {mathbb{I}^gamma}_beta doteq {mathbb{J}^{gammadeltaalpha}}_beta $$
Answered by Rob Tan on February 4, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP