TransWikia.com

How we can prove this vector identity?

Physics Asked by yyy333 on May 22, 2021

I was trying to rederive the formula of the angular momentum of electromagnetic field, and all the steps are clear for me except this one which I took from
"Photons and Atoms: Introduction to Quantum Electrodynamics" by Claude Cohen‐Tannoudji

$$sum_aUnabla_a(rtimesnabla)A_{bot a}=U(rtimesnabla)(nablacdot A_{bot})-U(nablatimes A_{bot})$$

Where $U$ is the Coulomb potential, $$A_{bot}$$ is the transvers vector potential and $ a$ is sub scripts run from 1 to 3. (like $x,y,z$).
Can any one help me how we get this result? I tried all vector identities I know.

One Answer

U and the perpendicular sub-index are irrelavent. I will omit them.

Some index expressions: $$ nabla_a = frac{partial}{partial x_a} nabla cdot A = sum_i frac{partial A_i}{partial x_i} nabla times A = sum_k hat{e}_k sum_i sum_j epsilon_{k i j} frac{partial A_j}{partial x_i} vec{r} = sum_i x_i hat{e}_i vec{r} times nabla = sum_k hat{e}_k sum_i sum_j epsilon_{k i j} x_i frac{partial}{partial x_j} $$ where $hat{e}_k$ is the unit vector in $k$th direction, and $ epsilon_{k i j}$ the Levi-Civita function. The Levi-Civita function is anti-symmetric, changes sign when exchange two indexes.

$$ sum_a nabla_a(rtimesnabla)A_{ a} = sum_a frac{partial}{partial x_a}(sum_k hat{e}_ksum_i sum_j epsilon_{a i j} x_ifrac{partial}{partial x_j})A_{ a} = sum_a sum_k hat{e}_k sum_i sum_j epsilon_{k i j} frac{partial x_i}{partial x_a} frac{partial}{partial x_j}A_{ a} + sum_a sum_k hat{e}_ksum_i sum_j epsilon_{k i j} x_ifrac{partial}{partial x_a}frac{partial}{partial x_j}A_{ a} = sum_a sum_k hat{e}_k sum_i sum_j epsilon_{k i j} delta_{ai}frac{partial}{partial x_j}A_{ a} + sum_k hat{e}_ksum_i sum_j epsilon_{k i j} x_ifrac{partial}{partial x_j} left{sum_a frac{partial A_a}{partial x_a} right} = sum_k hat{e}_k sum_i sum_j epsilon_{k i j} frac{partial}{partial x_j}A_{i} + sum_k hat{e}_ksum_i sum_j epsilon_{k i j} x_ifrac{partial}{partial x_j} left{ sum_a frac{partial A_a}{partial x_a} right} = -sum_k hat{e}_k sum_j sum_i epsilon_{k j i} frac{partial A_i}{partial x_j} + left{sum_k hat{e}_ksum_i sum_j epsilon_{k i j} x_ifrac{partial}{partial x_j} right} left{ sum_a frac{partial A_a}{partial x_a} right} = - (nablatimes A) + (rtimesnabla)(nablacdot A) $$

Correct answer by ytlu on May 22, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP