Physics Asked by IchVerlore on January 16, 2021
The partial derivative of a tensor of rank $n$, $T_{…i}$, with respect to $x^j$ can be expressed using the transformation rule:
begin{equation}
frac{partial}{partial x^j}T’_{…i}=frac{partial}{partial x^j}sum_{…k}…frac{partial x^k}{partial x’^i}T_{…k}
end{equation}
Since the derivative is linear:
begin{equation}
frac{partial}{partial x^j}T’_{…i}=sumfrac{partial}{partial x^j}(…frac{partial x^k}{partial x’^i}T_{…k})
end{equation}
If I’m correct, applying the product rule and knowing that $frac{partial x^i}{partial x^j}=delta^i_j$ yields:
begin{equation}
frac{partial}{partial x^j}T’_{…i}=sum_{…k}…frac{partial x^k}{partial x’^i}frac{partial T_{…k}}{partial x^j}
end{equation}
I’m having trouble interpreting the result. I believe it’s not even correct. What’s the $frac{partial T_{…k}}{partial x^j}$ factor?
I think the way to proceed is:
$frac{partial}{partial x^j} T'_{i}=frac{partial}{partial x^j} left(frac{partial x^s}{partial x'^i}T_{s}right)=frac{partial}{partial x^j} left(frac{partial x^s}{partial x'^i}right)T_{s}+frac{partial x^s}{partial x'^i}frac{partial T_{s}}{partial x^j}=frac{partial x'^q}{partial x^j} ,frac{partial^2 x^s}{partial x'^i partial x'^q},T_{s}+frac{partial x^s}{partial x'^i}frac{partial T_{s}}{partial x^j}$
I don't think you get cancellation there. Casing point. Polar and Cartesian coordinates in 2d:
$frac{partial}{partial phi},frac{partial r}{partial x}=frac{partial}{partial phi},cosphi=-sinphineq0$
Answered by Cryo on January 16, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP