Physics Asked on April 3, 2021
I am trying to show that for timelike paths, we can write the geodesic equation in terms of the four-velocity $U^mu=frac{dx^mu}{dtau}$ as
$$U^lambdanabla_lambda U^mu=0.$$
In other words, substituting $U^ mu=frac{dx^mu}{dtau}$ into the above equation should produce the affinely parameterised geodesic equation
$$frac{d^2x^mu}{dtau^2}+Gamma^mu_{rholambda}frac{dx^rho}{dtau}frac{dx^lambda}{dtau}=0.$$
Performing the substitution, I got instead
$$U^lambda(partial_lambda U^mu +Gamma^mu_{rholambda}U^rho)=0$$
$$U^lambdapartial_lambda U^mu +Gamma^mu_{rholambda}U^rho U^lambda=0$$
$$frac{dx^lambda}{dtau} frac{partial}{partial x^lambda} frac{dx^mu}{dtau}+Gamma^mu_{rholambda}frac{dx^rho}{dtau}frac{dx^lambda}{dtau}=0$$
$$frac{dx^lambda}{dtau}frac{d}{dtau} frac{partial x^mu}{partial x^lambda}+Gamma^mu_{rholambda}frac{dx^rho}{dtau}frac{dx^lambda}{dtau}=0$$
$$frac{dx^lambda}{dtau}frac{d}{dtau} delta^mu_lambda+Gamma^mu_{rholambda}frac{dx^rho}{dtau}frac{dx^lambda}{dtau}=0$$
$$Gamma^mu_{rholambda}frac{dx^rho}{dtau}frac{dx^lambda}{dtau}=0$$
where I used $frac{d}{dtau} delta^mu_lambda=0$ in the last line since $delta^mu_lambda$ is a constant.
What am I doing wrong?
begin{equation} frac{mathrm d x^lambda}{mathrm dtau} left[frac{partial}{partial x^lambda} frac{mathrm d x^mu}{mathrm dtau}right]=frac{mathrm d x^lambda}{mathrm dtau}left[frac{partial }{partialtau}left(frac{mathrm d x^mu}{mathrm dtau}right) frac{partialtau}{partial x^lambda}right]=frac{partial }{partialtau}left(frac{mathrm d x^mu}{mathrm dtau}right) underbrace{frac{partialtau}{partial x^lambda}frac{mathrm d x^lambda}{mathrm dtau}}_{1}=frac{mathrm d^2 x^mu}{mathrm dtau^2} tag{01}label{01} end{equation}
Correct answer by Frobenius on April 3, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP