TransWikia.com

Expectation value of the anticommutator of the bosonic creation and annihilation operator

Physics Asked by Phicalc on May 4, 2021

The number operator is given by:

$$hat{n}= a^{dagger} a.$$

For a presentation, I have to derive the expectation value of the anticommutator of the bosonic operators $a$ and $a^{dagger}$ :

$$langle {a , a^{dagger} } rangle = langle 2 , hat{n} + 1 rangle $$

How can I do this?

One Answer

$[a,a^dagger]=1$ gives $aa^dagger=1+a^dagger a$

So ${a,a^dagger}=aa^dagger+a^dagger a=2a^dagger a+1=2hat{n}+1$

To calculate the expectation value $langle 2hat{n}+1 rangle$ we have (take $hbar=1$ )

begin{align} langle 2hat{n}+1 rangle&=text{Tr}[hat{rho} (2hat{n}+1)] &=text{Tr}[frac{e^{-beta omega (hat{n}+1/2)}}{text{Tr}[e^{-beta omega (hat{n}+1/2)}]} (2hat{n}+1)] end{align} First let's compute $Z=text{Tr}[e^{-beta omega (hat{n}+1/2)}]=e^{-beta omega/2}sum_{n}langle n|e^{-beta omega hat{n}}|n rangle=e^{-beta omega/2}sum_{n}e^{-beta omega n} $

Then begin{align} text{Tr}[frac{e^{-beta omega (hat{n}+1/2)}}{Z} (2hat{n}+1)]&=1+2frac{e^{-beta omega/2} sum_{n}n e^{-n beta omega}}{Z} &=1+2frac{ sum_{n}n e^{-n beta omega}}{sum_{n}e^{-beta omega n}} langle 2hat{n}+1 rangle&=1+frac{2}{e^{beta omega}-1} end{align}

Hope this is helpful.

Correct answer by Frank on May 4, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP