Physics Asked on December 14, 2020
I am having trouble understanding the steps taken in (11.27) equation in Quantum Field Theory and the Standard Model by M.D.Schwartz.
I don’t understand how to get the middle diagonal matrix in the second last statement of the equation.
Here is my attempt. I am writing
$$ begin{pmatrix} sqrt{p cdot sigma} xi_{s’} sqrt{p cdot bar sigma} xi_{s’} end{pmatrix} = begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix} begin{pmatrix}xi_{s’} xi_{s’} end{pmatrix} quad
and
quad begin{pmatrix} sqrt{p cdot sigma} xi_{s} sqrt{p cdot bar sigma} xi_{s} end{pmatrix}^dagger = begin{pmatrix}xi_{s} xi_{s} end{pmatrix}^dagger begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix}^dagger $$
and then proceeding as follows:
$$ quad begin{pmatrix} sqrt{p cdot sigma} xi_s sqrt{p cdot bar sigma} xi_s end{pmatrix}^dagger begin{pmatrix} 0 mathbb{I}_2 mathbb{I}_2 0 end{pmatrix} begin{pmatrix} sqrt{p cdot sigma} xi_{s’} sqrt{p cdot bar sigma} xi_{s’} end{pmatrix} quad quad (x) $$
$$ = begin{pmatrix}xi_{s} xi_{s} end{pmatrix}^dagger begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix}^dagger
begin{pmatrix} 0 mathbb{I}_2 mathbb{I}_2 0 end{pmatrix}
begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix} begin{pmatrix}xi_{s’} xi_{s’} end{pmatrix} quad quad quad (a)$$
$$ = begin{pmatrix}xi_{s} xi_{s} end{pmatrix}^dagger begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix}
begin{pmatrix} 0 mathbb{I}_2 mathbb{I}_2 0 end{pmatrix}
begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix} begin{pmatrix}xi_{s’} xi_{s’} end{pmatrix} quad quad quad (b)$$
$$ = begin{pmatrix}xi_{s} xi_{s} end{pmatrix}^dagger begin{pmatrix} sqrt{p cdot sigma} quad 0 0 quad sqrt{p cdot bar sigma} end{pmatrix}
begin{pmatrix} 0 quad sqrt{p cdot bar sigma} sqrt{p cdot sigma} quad 0 end{pmatrix} begin{pmatrix}xi_{s’} xi_{s’} end{pmatrix} quad quad quad (c)$$
$$ = begin{pmatrix}xi_{s} xi_{s} end{pmatrix}^dagger
begin{pmatrix} 0 quad sqrt{(p cdot sigma )( p cdot bar sigma)} sqrt{(p cdot bar sigma )( p cdot sigma)} quad 0 end{pmatrix} begin{pmatrix}xi_{s’} xi_{s’} end{pmatrix} quad quad quad (d)$$
Clearly, my middle matrix is very different than the correct* one.
Can anyone please point out or hint what am I doing wrong? Or how the author obtained the middle diagonal matrix?
*Update:
The "correct" expression ( i.e the one given in the book is ):
$$ = begin{pmatrix}xi_{s} xi_{s} end{pmatrix}^dagger
begin{pmatrix} sqrt{(p cdot sigma )( p cdot bar sigma)} quad 0 0 quad sqrt{(p cdot sigma )( p cdot bar sigma)} end{pmatrix} begin{pmatrix}xi_{s’} xi_{s’} end{pmatrix} quad quad quad (y)$$
To summarize, equation 11.27 says:
$$ (x) = (y) = 2mdelta_{ss’}$$
My main concern is how did the author go from (x) to (y)?
I got the book and think I got it: he just switched columns 1 and 2. And you can do it without any doubt since your spinor components are "the same"
Answered by daydreamer on December 14, 2020
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP