TransWikia.com

Entropy for perfect gas, to show that $mathrm{d}S = c_vfrac{mathrm{d}p}{p} + c_pfrac{mathrm{d}V}{V}$

Physics Asked on January 3, 2021

I am trying to show that for ideal gas:

$
mathrm{d}S = c_vfrac{mathrm{d}p}{p} + c_pfrac{mathrm{d}V}{V}
$

But I keep getting an additional term $frac1Tleft(frac{partial U}{partial V}right)_Tmathrm{d}V$. What is my mistake?

$
begin{align}
mathrm{d}S &=frac{mathrm{d}Q}{T} = frac{mathrm{d}U}{T} + frac{pmathrm{d}V}{T} = frac1Tleft(frac{partial U}{partial T}right)_Vmathrm{d}T+frac1Tleft(frac{partial U}{partial V}right)_Vmathrm{d}V + frac{p}{T}mathrm{d}V
&= c_vfrac1Tmathrm{d}T + frac1Tleft(frac{partial U}{partial V}right)_Vmathrm{d}V + frac{R}{V}mathrm{d}V
end{align}
$

Using the ideal gas law as $pV=RT$ this becomes:

$
begin{align}
mathrm{d}S &= c_vfrac{mathrm{d}p}{p} + c_vfrac{mathrm{d}V}{V}+ Rfrac{mathrm{d}V}{V} + frac1Tleft(frac{partial U}{partial V}right)_Tmathrm{d}V
&= c_vfrac{mathrm{d}p}{p} + c_pfrac{mathrm{d}V}{V}+ frac1Tleft(frac{partial U}{partial V}right)_Tmathrm{d}V
end{align}
$

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP