Physics Asked on December 1, 2020
I have to find the order of 1/ε poles in dimensional regularization of $dfrac{lambda}{4!}phi^4$ theory. The Feynman integral is the following:
begin{equation}
I(p)=-λ^6int frac{d^4p_1}{(2pi)^4}frac{d^4p_3}{(2pi)^4}frac{d^4p_5}{(2pi)^4}frac{d^4p_7}{(2pi)^4}frac{d^4p_8}{(2pi)^4}frac{d^4p_{10}}{(2pi)^4}frac{1}{p_1^2+m^2}(frac{1}{p_7^2+m^2})^2(frac{1}{(p-p_1-p_7)^2-m^2})^2 frac{1}{p_3^2+m^2}frac{1}{p_5^2+m^2}frac{1}{(p-p_1-p_7-p_3-p_5)^2+m^2}frac{1}{p_8^2+m^2}frac{1}{p_{10}^2+m^2}frac{1}{(p_7-p_8-p_{10})^2+m^2}
end{equation}
My question is whether I can tell what the order of $dfrac{1}{epsilon}$ poles will be, without calculating the Feynman integral.
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP