MathOverflow Asked on November 26, 2021
Let $mathbf{x} = (x_0, x_1, x_2), mathbf{y} = (y_0, y_1, y_2)$ be vectors over a field $mathbb{F}$ of characteristic zero. Define the function
$displaystyle S(mathbf{x}, mathbf{y}) = x_2 (y_0^2 – 2 y_1 y_2) + x_1 (2 y_2^2 – y_0 y_1) + x_0 (y_1^2 – y_0 y_2) = begin{vmatrix} x_2 & x_1 & x_0 \ y_2 & y_1 & y_0 \ y_1 & y_0 & 2 y_2 end{vmatrix}$
and $T(mathbf{x}, mathbf{y}) = S(mathbf{y}, mathbf{x})$.
Curiously, I found that for fixed $(s,t) in mathbb{F}^2$ the set of solutions to $s = S(mathbf{x}, mathbf{y}), t = T(mathbf{x}, mathbf{y})$ is stable under the map
$mathbf{x} mapsto begin{bmatrix} x_0 + 2 x_1 + 2 x_2 \ x_0 + x_1 + 2 x_2 \ x_0 + x_1 + x_2 end{bmatrix}, mathbf{y} mapsto begin{bmatrix} y_0 + 2 y_1 + 2 y_2 \ y_0 + y_1 + 2 y_2 \ y_0 + y_1 + y_2 end{bmatrix}.$
Moreover, the matrix defining this linear map which is
$M = begin{bmatrix} 1 & 2 & 2 \ 1 & 1 & 2 \ 1 & 1 & 1 end{bmatrix}$
has determinant one.
Thus, if we define the group $mathcal{G} subset text{GL}_3(mathbb{F})$ to be the set of $3 times 3$ matrices $A$ over $mathbb{F}$ such that $S(mathbf{x}, mathbf{y}) = S(A mathbf{x}, A mathbf{y})$ for all $mathbf{x}, mathbf{y} in mathbb{F}^3$, then we have shown that $M in mathcal{G}$. Further, $M$ has infinite order so $mathcal{G}$ contains infinitely many elements.
Is it possible to determine $mathcal{G}$ in a reasonable way?
First, by transposing and interchanging two rows $S({bf x},{bf y}) = -left|begin{matrix} x_0 & y_0 & 2y_2 \ x_1 & y_1 & y_0 \ x_2 & y_2 & y_1 end{matrix} right|$. Notice also that if $T = left[begin{matrix}0&0&2 \ 1&0 &0 \ 0& 1& 0end{matrix} right]$ then $T{bf y} = left[begin{matrix} 2y_2 \ y_0 \ y_1end{matrix}right]$. Hence, $S({bf x},{bf y}) = -left| {bf x} {bf y} T{bf y} right|$
Suppose $Ain mathcal G$ then for all ${bf x},{bf y} in mathbb F^3$ $$ S({bf x},{bf y}) = S(A{bf x}, A{bf y}) = -left|{bf x} {bf y} |A|A^{-1}TA{bf y}right|. $$ Now when ${bf x} = e_3$ then this gives $$ y_0^2 - 2y_1y_2 = y_0langle|A|A^{-1}TA{bf y}, e_2rangle - y_1langle|A|A^{-1}TA{bf y}, e_1rangle. $$ Subsequently, when ${bf y} = e_1$ this gives $1 = langle|A|A^{-1}TAe_1, e_2rangle$, and when ${bf y} = e_2$ this gives $0 = langle|A|A^{-1}Tae_2, e_1rangle$. Moreover, when ${bf y} = e_1+e_3$ then after some computation $$langle|A|A^{-1}TAe_1, e_1rangle = langle|A|A^{-1}TAe_3, e_3rangle$$
When ${bf x} = e_2$ this gives $$ 2y_2^2 - y_0y_1 = y_2langle|A|A^{-1}TA{bf y}, e_1rangle - y_0langle|A|A^{-1}TA{bf y}, e_3rangle, $$ ${bf y} = e_1$ gives $0 = langle|A|A^{-1}TAe_1, e_3rangle$, and ${bf y} = e_3$ gives $2 = langle|A|A^{-1}Tae_3, e_1rangle$. Moreover, when ${bf y} = e_1+e_2$ then $$langle|A|A^{-1}TAe_1, e_1rangle = langle|A|A^{-1}TAe_2, e_2rangle$$
When ${bf x} = e_1$ this gives $$ y_1^2 - y_0y_2 = y_1langle|A|A^{-1}TA{bf y}, e_3rangle - y_2langle|A|A^{-1}TA{bf y}, e_2rangle $$ ${bf y}=e_2$ gives $1 = langle|A|A^{-1}TAe_2, e_3rangle$ and ${bf y} = e_3$ gives $0 = langle|A|A^{-1}TAe_3, e_2rangle$
If we define $lambda := langle|A|A^{-1}TAe_1, e_1rangle$ then the above argument concludes $$ |A|A^{-1}TA = left[begin{matrix}lambda&0&2 \ 1&lambda &0 \ 0& 1& lambdaend{matrix} right] = lambda I + T $$ and so $$ TA = frac{1}{|A|}lambda A + frac{1}{|A|}AT. $$ One won't get anymore out of these equations. Furthermore, any $A$ satisfying this equation gives $$ S(A{bf x}, A{bf y}) = -|{bf x} {bf y} lambda{bf y} + T{bf y}| = S({bf x}, {bf y}) $$ by column replacement. Your $M$ corresponds to the case where $lambda = 0$, that is commutes with $T$, and $|A| = 1$. However, there may be more matrices in $mathcal G$.
Therefore, $$ mathcal G = left{ Ain {rm GL}_3(mathbb F) : TA = frac{1}{|A|}lambda A + frac{1}{|A|}AT, lambdain mathbb F right} $$
Answered by Chris Ramsey on November 26, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP