Mathematics Asked by GregoryStory16 on January 18, 2021
I need to find the limit of this function using L’Hopitals rule and I am not sure about my calculations
$$ lim_{xto (-infty)}frac{e^frac{1}{x^3}-1}{arctanfrac{2}{x^4}}$$
Using Lhopital rule and finding the derivative I get
$$ lim_{xto (-infty)}frac{e^frac{1}{x^3}*frac{-3}{x^4} }{frac{1}{1+frac{4}{x^8}}* frac{-8}{x^5}}$$
but Im not sure how to proceed further I tried simplifying but Im not 100% confident that’s correct
$$ lim_{xto (-infty)}frac{e^frac{1}{x^3}*frac{-3}{x^4} }{frac{1}{1+frac{4}{x^8}}* frac{-8}{x^5}} = frac{e^frac{1}{x^3}*frac{-3}{1} }{frac{1}{1+frac{4}{x^8}}* frac{-8}{x}} = frac{e^frac{1}{x^3}*-3 }{frac{-8}{(1+frac{4}{x^8})x}} = frac{e^frac{1}{x^3}*-3 }{frac{-8}{x+frac{4}{x^7}}} = e^frac{1}{x^3}*-3 *{frac{x+frac{4}{x^7}}{-8}} = 1*-3 {frac{-infty+0}{-8}} = -infty$$
Hint:
We don't actually need L'Hopital's rule
Set $-dfrac1x=himplies hto0^+$
$$lim_{hto0^+}dfrac{e^{-h^3}-1}{arctan(2h^4)}=lim_{hto0^+}dfrac{e^{-h^3}-1}{-h^3}cdotdfrac1{lim_{hto0^+}dfrac{arctan(2h^4)}{2h^4}}cdotlim_{hto0^+}dfrac{-h^3}{2h^4}=?$$
Correct answer by lab bhattacharjee on January 18, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP