TransWikia.com

Unique solution to an Initial Value Problem

Mathematics Asked on December 27, 2021

I’m trying to find if the solution of the following initial value problem is unique.
begin{align}
y’ &= 3 (y^{2/3})\
y(0) &= 0
end{align}

I have tried with local or global well posedness theorems but I don’t understand how to apply them to this problem.
The answer I am supposed to give requires me to use these theorems somehow.

2 Answers

All solutions are given by $$y(x) = begin{cases} 0 & x le L, \ (x-L)^3, & x gt L, end{cases} $$ where $L in [0, infty]$. (For $L=infty$, $y equiv 0$; thanks to John Hughes for catching this case missing in an earlier version of this answer.)

One way to see that (rough sketch): Suppose $y(x_0) > 0$ for some $x_0 > 0$ and solve (using your fancy theorems, if you want to – but separation of variables will do just fine) backwards in time. This works until you hit 0, from where you can only continue with $0$ since $y$ is increasing and nonnegative.

Answered by Keba on December 27, 2021

This is one where just guessing an answer helps. From the first equation, it sure looks as if $y = x^n$ might be a solution for some $n$, and doing out the algebra, it turns out that $y = x^3$ is actually a solution. But so is $y = 0$. So ... not a lot of uniqueness there.

Sometimes brute force instead of fancy theorems is the way to go.

Answered by John Hughes on December 27, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP